Search results

1 – 10 of over 15000
Article
Publication date: 19 May 2020

Tobias Weiss

The paper aims to clarify the relationship between energy flexibility and building components and technologies. It determines the energy flexibility potential of buildings in…

Abstract

Purpose

The paper aims to clarify the relationship between energy flexibility and building components and technologies. It determines the energy flexibility potential of buildings in relation to their physical characteristics and heat supply systems with respect to external boundary conditions.

Design/methodology/approach

The emphasis of the evaluation is based on the timing and the amount of shiftable and storable thermal loads in buildings under defined indoor thermal comfort conditions. Dynamic building simulation is used to evaluate the potential of selected building characteristics to shift heating loads away from peak demand periods. Insights on the energy flexibility potential of individual technologies are gained by examining the thermal behaviour of single-zone simulation models as different input parameters are varied. For this purpose, parameters such as envelope qualities, construction materials, control systems for heating are modified.

Findings

The paper provides a comprehensive understanding of the influence of the different building parameters and their variations on their energy shifting potential under “laboratory conditions” with steady boundaries. It suggests that the investigated boundary conditions such as outside temperature, infiltration, envelope quality and user behaviour, which influence the heating load of a building, also influence the resulting potential for energy flexibility. The findings show that the combination of a slowly reacting heat transfer system, such as concrete core activation and a readily available storage mass in the room, and a high insulation standard proved to have a high potential to shift heating loads.

Originality/value

In this paper, energy-flexible components were evaluated in a steady-state simulation approach. Outside temperature, solar irradiation and internal loads over the simulation duration were set constant over time to provide laboratory conditions for the potential analysis. On the basis of both duration and performance of the load shifting or storage event, the components were then quantified in a parametric simulation. The determined energy flexibility is directly related to the power of the heating, cooling, hot water and ventilation system, which can be switched on or off. In general, it can be seen that high power (high loads) demand usually can be switched on and off for a short duration, and low power demand usually for a longer duration. The investigated boundary conditions such as outside temperature, infiltration, envelope quality and user behaviour, which influence the load of a building, also influence the resulting potential for energy flexibility. Higher insulation standards, for example, lead to lower loads that can be switched on or off, but increase the duration of the event (flexibility time). So that, in particular, the shiftable load potential is low but results in a long switch-off duration. Furthermore, passive storage potential in buildings like the storage mass inside the room and the type of heat/cooling transfer system can affect the flexibility potential by more than three times. Especially the combination of a high storage mass and a concrete core heat transfer system can significantly increase the flexibility.

Details

Smart and Sustainable Built Environment, vol. 10 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 21 July 2023

Jinhua Sun

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance…

Abstract

Purpose

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance. Significant design progress guidance has been made through continuous numerical and experimental research in recent years. This paper tested and analysed the residual loading capacity of SRCFST columns under axial loading after experiencing non-uniform ISO-834 standard fire.

Design/methodology/approach

The experimental research covered the main parameter of heating conditions, 1-side and 2-side fire, through two specimens. Two specimens were heated and loaded simultaneously in the furnace for 240 min. After cooling, the columns were moved to the hydraulic loading system and loaded to failure to determine the columns' residual capacity.

Findings

The experimental results indicated that the non-uniform heating area plays an essential role in the overall performance of SRCFST columns, the increasing heating area of columns results in lower residual loading capacity and stiffness. The SRCFST columns still had a high loading capacity after heating and loading in the fire.

Originality/value

The comparison of experimental data against design results showed that the design method generated a 16% safety margin for S2H4 and a 39% safety margin for S1H4.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 May 2016

Amos Madhlopa

The purpose of this paper is to investigate a wall-integrated solar chimney for passive ventilation of a building cavity. Ventilation is required to improve the circulation of air…

Abstract

Purpose

The purpose of this paper is to investigate a wall-integrated solar chimney for passive ventilation of a building cavity. Ventilation is required to improve the circulation of air in the built environment. This can be achieved through natural or forced convection. Natural circulation can be driven by renewable energy, and so it promotes sustainable exploitation of energy resources. Solar energy is one of the promising renewable energy resources.

Design/methodology/approach

The chimney was designed to face the Equator on the wall of a room which required ventilation. Mean monthly daily heating and cooling loads of the room were computed with and without a solar chimney by using hourly meteorological data from nine different weather sites at low, medium and high latitudes. The chimney was implemented with and without airflow control, and simulated by using the ESP-r software.

Findings

Results show that the solar chimney with airflow control marginally reduced the heating load in the building envelope, with a similar effect being exhibited by the chimney with uncontrolled airflow. The cooling load was reduced by the controlled airflow at all the nine sites. In contrast, the uncontrolled airflow increased the cooling load at some sites. In addition, the chimney with airflow control reduced the annual total thermal load at all the sites, while the chimney with uncontrolled airflow raised the total thermal load at some locations.

Originality/value

The performance of solar chimneys designed with and without airflow control systems has been investigated under the same prevailing meteorological conditions at a given site. Findings show that controlling airflow in a solar chimney reduces the total thermal load in the built environment. This information can be applied in different parts of the world.

Details

Journal of Engineering, Design and Technology, vol. 14 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 June 1944

H. Rissik

A FREQUENTLY recurring problem, more particularly in the sphere of electrical engineering practice, is the determination of the equivalent rating of a machine or piece of…

Abstract

A FREQUENTLY recurring problem, more particularly in the sphere of electrical engineering practice, is the determination of the equivalent rating of a machine or piece of apparatus under conditions of intermittent loading. By equivalent rating is to be understood the value of the continuous load, whether expressed in terms of current or power, which will produce the same final temperature rise as is actually produced by the given intermittent load.

Details

Aircraft Engineering and Aerospace Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 14 December 2021

Fuminobu Ozaki and Takumi Umemura

In this study, the bending strength, flexural buckling strength and collapse temperature of small steel specimens with rectangular cross-sections were examined by steady and…

Abstract

Purpose

In this study, the bending strength, flexural buckling strength and collapse temperature of small steel specimens with rectangular cross-sections were examined by steady and transient state tests with various heating and deformation rates.

Design/methodology/approach

The engineering stress and strain relationships for Japan industrial standard (JIS) SN400 B mild steels at elevated temperatures were obtained by coupon tests under three strain rates. A bending test using a simple supported small beam specimen was conducted to examine the effects of the deformation rates on the centre deflection under steady-state conditions and the heating rates under transient state conditions. Flexural buckling tests using the same cross-section specimen as that used in the bending test were conducted under steady-state and transient-state conditions.

Findings

It was clarified that the bending strength and collapse temperature are evaluated by the full plastic moment using the effective strength when the strain is equal to 0.01 or 0.02 under fast strain rates (0.03 and 0.07 min–1). In contrast, the flexural buckling strength and collapse temperature are approximately evaluated by the buckling strength using the 0.002 offset yield strength under a slow strain rate (0.003 min–1).

Originality/value

Regarding both bending and flexural buckling strengths and collapse temperatures of steel members subjected to fire, the relationships among effects of steel strain rate for coupon test results, heating and deformation rates for the heated steel members were minutely investigated by the steady and transient-state tests at elevated temperatures.

Article
Publication date: 12 September 2008

Damiana Chinese

The objective of this study is to highlight the questions arising in the design of district heating and cooling systems (DHCSs) in a distributed generation context and to present…

1236

Abstract

Purpose

The objective of this study is to highlight the questions arising in the design of district heating and cooling systems (DHCSs) in a distributed generation context and to present a model to help find cost‐effective solutions.

Design/methodology/approach

Literature on energy systems optimisation is reviewed and a mixed integer programming model for decentralized DHCSs design is developed and applied to two real case studies.

Findings

Distributed cooling generation partly coupled with distributed cogeneration and DH is the preferred solution in the examined areas. The optimal configurations, with special reference to network sizing and layout, significantly depend on heating demand profiles and energy prices.

Research limitations/implications

Interdependencies between energy units sizing and network layout definition should be considered. Obtaining more robust and reliable network configurations should be the objective of future modelling efforts.

Practical implications

Despite the growth of distributed energy conversion, designers often rely on centralized concepts in order to reap economies of scale. The presented model helps in discovering less usual solutions representing the most profitable option.

Originality/value

Combining and comparing central and distributed production of heat and cooling under consideration of network costs.

Details

International Journal of Energy Sector Management, vol. 2 no. 3
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 17 July 2023

Zahra Jalali, Asaad Y. Shamseldin and Sandeeka Mannakkara

Climate change reports from New Zealand claim that climate change will impact some cities such as Auckland from a heating-dominated to a cooling-dominated climate. The benefits…

Abstract

Purpose

Climate change reports from New Zealand claim that climate change will impact some cities such as Auckland from a heating-dominated to a cooling-dominated climate. The benefits and risks of climate change on buildings' thermal performance are still unknown. This paper examines the impacts of climate change on the energy performance of residential buildings in New Zealand and provides insight into changes in trends in energy consumption by quantifying the impacts of climate change.

Design/methodology/approach

The present paper used a downscaling method to generate weather data for three locations in New Zealand: Auckland, Wellington and Christchurch. The weather data sets were applied to the energy simulation of a residential case study as a reference building using a validated building energy analysis tool (EnergyPlus).

Findings

The result indicated that in Wellington and Christchurch, heating would be the major thermal load of residential buildings, while in Auckland, the main thermal load will change from heating to cooling in future years. The revised R-values for the building code will affect the pattern of dominant heating and cooling demands in buildings in Auckland in the future, while in Wellington and Christchurch, the heating load will be higher than the cooling load.

Originality/value

The findings of this study gave a broader insight into the risks and opportunities of climate change for the thermal performance of buildings. The results established the significance of considering climate change in energy performance analysis to inform the appropriate building codes for the design of residential buildings to avoid future costly changes to buildings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 May 1954

W.H. Horton

This paper reviews and compares the methods of kinetic heat simulation which may be used simultaneously with normal loading in structural tests of aircraft or components. Basic…

Abstract

This paper reviews and compares the methods of kinetic heat simulation which may be used simultaneously with normal loading in structural tests of aircraft or components. Basic data on the quantities involved in and the limitations of the various techniques are given. An extensive bibliography of current literature on heat technology is provided.

Details

Aircraft Engineering and Aerospace Technology, vol. 26 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 2008

Colin D. A. Porteous and Rosalie Menon

Taking its cue from the UK government's declaration that every new home should be ‘zero-carbon’ by 2016, this paper explores how close a flexible, prototype-housing model might…

Abstract

Taking its cue from the UK government's declaration that every new home should be ‘zero-carbon’ by 2016, this paper explores how close a flexible, prototype-housing model might come to meeting this target (accepting that there is currently some ambiguity between the respective official ‘zero-carbon’ definitions regarding off-site renewable supply). The prime aim is to design economically (affordable by housing associations) to the European ‘passive house’ standard of no more than 15 kWh/m2 for space heating and a maximum total consumption of 70 kWh/m2 adding in hot water and electricity. The model also prioritizes generous access to sunlight and daylight, as well as realistic levels of air change in a low-volume, intensively occupied scenario. Associated aims are: a) to meet thermal loads without use of fossil fuels such as gas or oil; and b) to employ architecturally integrated active solar thermal and electrical arrays to respectively meet at least one third of the water heating and electrical loads. Micro-wind generation is excluded from the study as too site-dependent. A subsidiary agenda is to achieve a flexible plan in terms of orientation and access, and to provide utility facilities that support the environmental strategy (e.g. drying clothes without compromising energy use or air quality). The paper goes on to address equivalent prospects for retrofit, briefly discusses institutional and other barriers to achievement, and muses on how much of the balance of the electrical demand can be met renewably in Scotland in the near future.

Details

Open House International, vol. 33 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 7 July 2017

Duncan Cree, Prosper Pliya, Mark F. Green and Albert Noumowé

The purpose of this paper is to evaluate high strength concrete (HSC) containing polypropylene fibers (PP-fibers) at high temperature under a compressive load.

Abstract

Purpose

The purpose of this paper is to evaluate high strength concrete (HSC) containing polypropylene fibers (PP-fibers) at high temperature under a compressive load.

Design/methodology/approach

The use of PP fibers in HSC is known to reduce and at times eliminate the risk of spalling. HSC containing 0, 1 and 2 kg/m3 of PP-fibers were subjected to various temperatures from 20°C to 150°C, 300°C and 450°C and evaluated in a “hot condition”. One group of specimens was in a non-stressed condition during heating (unstressed hot), while a second group was subjected to an initial preload of 40 per cent of the room temperature compressive strength during the heating (stressed hot).

Findings

Results showed that stressed concrete containing PP-fibers had lower thermal gradients (the temperature difference between the surface and center temperatures as a function of radial distance) and a decrease in relative porosity. However, the compressive strength of stressed specimens was improved with or without fibers as compared to that of the unstressed HSC. The increased stress levels due to concrete expansion at elevated temperature were also reported. The PP-fibers did not have a significant effect on the compressive strength of stressed concrete as compared to the unstressed state.

Originality/value

This paper reports the compressive strength of PP-fibers in HSC at elevated temperature with and without a pre-load.

Details

Journal of Structural Fire Engineering, vol. 8 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 15000