Search results

1 – 2 of 2
Article
Publication date: 16 March 2015

Justin Sexton, Yvette Everingham and Bertrand Timbal

This study aims to investigate the effects of climate change on harvestability for sugarcane-growing regions situated between mountain ranges and the narrow east Australian…

Abstract

Purpose

This study aims to investigate the effects of climate change on harvestability for sugarcane-growing regions situated between mountain ranges and the narrow east Australian coastline.

Design/methodology/approach

Daily rainfall simulations from 11 general circulation models (GCMs) were downscaled for seven Australian sugarcane regions (1961:2000). Unharvestable days were calculated from these 11 GCMs and compared to interpolated observed data. The historical downscaled GCM simulations were then compared to simulations under low (B1) and high (A2) emissions scenarios for the period of 2046-2065. The 25th, 50th and 75th percentiles of paired model differences were assessed using 95 per cent bootstrapped confidence intervals.

Findings

A decrease in the number of unharvestable days for the Burdekin (winter/spring) and Bundaberg (winter) regions and an increase for the Herbert region (spring) were plausible under the A2 scenario. Spatial plots identified variability within regions. Northern and southern regions were more variable than central regions.

Practical implications

Changes to the frequency of unharvestable days may require a range of management adaptations such as modifying the harvest period and upgrading harvesting technologies.

Originality/value

The application of a targeted industry rainfall parameter (unharvestable days) obtained from downscaled climate models provided a novel approach to investigate the impacts of climate change. This research forms a baseline for industry discussion and adaptation planning towards an environmentally and economically sustainable future. The methodology outlined can easily be extended to other primary industries impacted by wet weather.

Details

International Journal of Climate Change Strategies and Management, vol. 7 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 9 October 2023

Gokulnath R. and Booma Devi

Diesel has traditionally been considered the best-suited and most widely used fuel in various sectors, including manufacturing industries, power production, automobiles and…

Abstract

Purpose

Diesel has traditionally been considered the best-suited and most widely used fuel in various sectors, including manufacturing industries, power production, automobiles and transportation. However, with the ongoing crisis of fossil fuel inadequacy, the search for alternative fuels and their application in these sectors has become increasingly important. One particularly interesting and beneficial alternative fuel is biodiesel derived from bio sources.

Design/methodology/approach

In this research, an attempt was made to use biodiesel in an unconventional micro gas turbine engine. It will remove the concentric use of diesel engines for power production by improving fuel efficiency as well as increasing the power production rate. Before the fuel is used enormously, it has to be checked in many ways such as performance, emission and combustion analysis experimentally.

Findings

In this paper, a detailed experimental study was made for the use of Spirulina microalgae biodiesel in a micro gas turbine. A small-scale setup with the primary micro gas turbine and secondary instruments such as a data acquisition system and AVL gas analyser. The reason for selecting the third-generation microalgae is due to its high lipid and biodiesel production rate. For the conduction of experimental tests, certain conditions were followed in addition that the engine rotating rpm was varied from 4,000, 5,000 and 6,000 rpm. The favourable and predicted results were obtained with the use of microalgae biodiesel.

Originality/value

The performance and combustion results were not exactly equal or greater for biodiesel blends but close to the values of pure diesel; however, the reduction in the emission of CO was at the appreciable level for the used spirulina microalgae biodiesel. The emission of nitrogen oxides and carbon dioxide was a little higher than the use of pure diesel. This experimental analysis results proved that the use of spirulina microalgae biodiesel is both economical and effective replacement for fossil fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

All dates (2)

Content type

1 – 2 of 2