Search results

1 – 2 of 2
Article
Publication date: 23 August 2019

Sahar Tadayonirad, Hany Seidgar, Hamed Fazlollahtabar and Rasoul Shafaei

In real manufacturing systems, schedules are often disrupted with uncertainty factors such as random machine breakdown, random process time, random job arrivals or job…

Abstract

Purpose

In real manufacturing systems, schedules are often disrupted with uncertainty factors such as random machine breakdown, random process time, random job arrivals or job cancellations. This paper aims to investigate robust scheduling for a two-stage assembly flow shop scheduling with random machine breakdowns and considers two objectives makespan and robustness simultaneously.

Design/methodology/approach

Owing to its structural and algorithmic complexity, the authors proposed imperialist competitive algorithm (ICA), genetic algorithm (GA) and hybridized with simulation techniques for handling these complexities. For better efficiency of the proposed algorithms, the authors used artificial neural network (ANN) to predict the parameters of the proposed algorithms in uncertain condition. Also Taguchi method is applied for analyzing the effect of the parameters of the problem on each other and quality of solutions.

Findings

Finally, experimental study and analysis of variance (ANOVA) is done to investigate the effect of different proposed measures on the performance of the obtained results. ANOVA's results indicate the job and weight of makespan factors have a significant impact on the robustness of the proposed meta-heuristics algorithms. Also, it is obvious that the most effective parameter on the robustness for GA and ICA is job.

Originality/value

Robustness is calculated by the expected value of the relative difference between the deterministic and actual makespan.

Article
Publication date: 14 August 2017

Mehdi Abedi, Hany Seidgar and Hamed Fazlollahtabar

The purpose of this paper is to present a new mathematical model for the unrelated parallel machine scheduling problem with aging effects and multi-maintenance activities.

Abstract

Purpose

The purpose of this paper is to present a new mathematical model for the unrelated parallel machine scheduling problem with aging effects and multi-maintenance activities.

Design/methodology/approach

The authors assume that each machine may be subject to several maintenance activities over the scheduling horizon and a machine turn into its initial condition after maintenance activity and the aging effects start anew. The objective is to minimize the weighted sum of early/tardy times of jobs and maintenance costs.

Findings

As this problem is proven to be non-deterministic polynomial-time hard (NP-hard), the authors employed imperialist competitive algorithm (ICA) and genetic algorithm (GA) as solution approaches, and the parameters of the proposed algorithms are calibrated by a novel parameter tuning tool called Artificial Neural Network (ANN). The computational results clarify that GA performs better than ICA in quality of solutions and computational time.

Originality/value

Predictive maintenance (PM) activities carry out the operations on machines and tools before the breakdown takes place and it helps to prevent failures before they happen.

Details

Journal of Modelling in Management, vol. 12 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 2 of 2