Search results

1 – 6 of 6
Article
Publication date: 2 January 2024

Xiangdi Yue, Yihuan Zhang, Jiawei Chen, Junxin Chen, Xuanyi Zhou and Miaolei He

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and…

Abstract

Purpose

In recent decades, the field of robotic mapping has witnessed widespread research and development in light detection and ranging (LiDAR)-based simultaneous localization and mapping (SLAM) techniques. This paper aims to provide a significant reference for researchers and engineers in robotic mapping.

Design/methodology/approach

This paper focused on the research state of LiDAR-based SLAM for robotic mapping as well as a literature survey from the perspective of various LiDAR types and configurations.

Findings

This paper conducted a comprehensive literature review of the LiDAR-based SLAM system based on three distinct LiDAR forms and configurations. The authors concluded that multi-robot collaborative mapping and multi-source fusion SLAM systems based on 3D LiDAR with deep learning will be new trends in the future.

Originality/value

To the best of the authors’ knowledge, this is the first thorough survey of robotic mapping from the perspective of various LiDAR types and configurations. It can serve as a theoretical and practical guide for the advancement of academic and industrial robot mapping.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 May 2024

Minghao Wang, Ming Cong, Yu Du, Huageng Zhong and Dong Liu

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no…

Abstract

Purpose

To make the robot that have real autonomous ability is always the goal of mobile robot research. For mobile robots, simultaneous localization and mapping (SLAM) research is no longer satisfied with enabling robots to build maps by remote control, more needs will focus on the autonomous exploration of unknown areas, which refer to the low light, complex spatial features and a series of unstructured environment, lick underground special space (dark and multiintersection). This study aims to propose a novel robot structure with mapping and autonomous exploration algorithms. The experiment proves the detection ability of the robot.

Design/methodology/approach

A small bio-inspired mobile robot suitable for underground special space (dark and multiintersection) is designed, and the control system is set up based on STM32 and Jetson Nano. The robot is equipped with double laser sensor and Ackerman chassis structure, which can adapt to the practical requirements of exploration in underground special space. Based on the graph optimization SLAM method, an optimization method for map construction is proposed. The Iterative Closest Point (ICP) algorithm is used to match two frames of laser to recalculate the relative pose of the robot, which improves the sensor utilization rate of the robot in underground space and also increase the synchronous positioning accuracy. Moreover, based on boundary cells and rapidly-exploring random tree (RRT) algorithm, a new Bio-RRT method for robot autonomous exploration is proposed in addition.

Findings

According to the experimental results, it can be seen that the upgraded SLAM method proposed in this paper achieves better results in map construction. At the same time, the algorithm presents good real-time performance as well as high accuracy and strong maintainability, particularly it can update the map continuously with the passing of time and ensure the positioning accuracy in the process of map updating. The Bio-RRT method fused with the firing excitation mechanism of boundary cells has a more purposeful random tree growth. The number of random tree expansion nodes is less, and the amount of information to be processed is reduced, which leads to the path planning time shorter and the efficiency higher. In addition, the target bias makes the random tree grow directly toward the target point with a certain probability, and the obtained path nodes are basically distributed on or on both sides of the line between the initial point and the target point, which makes the path length shorter and reduces the moving cost of the mobile robot. The final experimental results demonstrate that the proposed upgraded SLAM and Bio-RRT methods can better complete the underground special space exploration task.

Originality/value

Based on the background of robot autonomous exploration in underground special space, a new bio-inspired mobile robot structure with mapping and autonomous exploration algorithm is proposed in this paper. The robot structure is constructed, and the perceptual unit, control unit, driving unit and communication unit are described in detail. The robot can satisfy the practical requirements of exploring the underground dark and multiintersection space. Then, the upgraded graph optimization laser SLAM algorithm and interframe matching optimization method are proposed in this paper. The Bio-RRT independent exploration method is finally proposed, which takes shorter time in equally open space and the search strategy for multiintersection space is more efficient. The experimental results demonstrate that the proposed upgrade SLAM and Bio-RRT methods can better complete the underground space exploration task.

Details

Robotic Intelligence and Automation, vol. 44 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2023

Minghao Wang, Ming Cong, Yu Du, Dong Liu and Xiaojing Tian

The purpose of this study is to solve the problem of an unknown initial position in a multi-robot raster map fusion. The method includes two-dimensional (2D) raster maps and…

Abstract

Purpose

The purpose of this study is to solve the problem of an unknown initial position in a multi-robot raster map fusion. The method includes two-dimensional (2D) raster maps and three-dimensional (3D) point cloud maps.

Design/methodology/approach

A fusion method using multiple algorithms was proposed. For 2D raster maps, this method uses accelerated robust feature detection to extract feature points of multi-raster maps, and then feature points are matched using a two-step algorithm of minimum Euclidean distance and adjacent feature relation. Finally, the random sample consensus algorithm was used for redundant feature fusion. On the basis of 2D raster map fusion, the method of coordinate alignment is used for 3D point cloud map fusion.

Findings

To verify the effectiveness of the algorithm, the segmentation mapping method (2D raster map) and the actual robot mapping method (2D raster map and 3D point cloud map) were used for experimental verification. The experiments demonstrated the stability and reliability of the proposed algorithm.

Originality/value

This algorithm uses a new visual method with coordinate alignment to process the raster map, which can effectively solve the problem of the demand for the initial relative position of robots in traditional methods and be more adaptable to the fusion of 3D maps. In addition, the original data of the map can come from different types of robots, which greatly improves the universality of the algorithm.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 February 2024

Ravinder Singh

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of…

Abstract

Purpose

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of nodes and deploy in free space for reliable trajectory planning.

Design/methodology/approach

Traditional PRM is modified by developing a decision-making strategy for the selection of optimal nodes w.r.t. the complexity of the environment and deploying the optimal number of nodes outside the closed segment. Subsequently, the generated trajectory is made smoother by implementing the modified Bezier curve technique, which selects an optimal number of control points near the sharp turns for the reliable convergence of the trajectory that reduces the sum of the robot’s turning angles.

Findings

The proposed technique is compared with state-of-the-art techniques that show the reduction of computational load by 12.46%, the number of sharp turns by 100%, the number of collisions by 100% and increase the velocity parameter by 19.91%.

Originality/value

The proposed adaptive technique provides a better solution for autonomous navigation of unmanned ground vehicles, transportation, warehouse applications, etc.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 February 2024

Amruta Rout, Golak Bihari Mahanta, Bibhuti Bhusan Biswal, Renin Francy T., Sri Vardhan Raj and Deepak B.B.V.L.

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic…

150

Abstract

Purpose

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic situation like COVID-19. The purposed research work can help in better management of pandemic situations in rural areas as well as developing countries where medical facility is not easily available.

Design/methodology/approach

It becomes very difficult for the medical staff to have a continuous check on patient’s condition in terms of symptoms and critical parameters during pandemic situations. For dealing with these situations, a service mobile robot with multiple sensors for measuring patients bodily indicators has been proposed and the prototype for the same has been developed that can monitor and aid the patient using the robotic arm. The fuzzy controller has also been incorporated with the mobile robot through which decisions on patient monitoring can be taken automatically. Mamdani implication method has been utilized for formulating mathematical expression of M number of “if and then condition based rules” with defined input Xj (j = 1, 2, ………. s), and output yi. The inputs and output variables are formed by the membership functions µAij(xj) and µCi(yi) to execute the Fuzzy Inference System controller. Here, Aij and Ci are the developed fuzzy sets.

Findings

The fuzzy-based prediction model has been tested with the output of medicines for the initial 27 runs and was validated by the correlation of predicted and actual values. The correlation coefficient has been found to be 0.989 with a mean square error value of 0.000174, signifying a strong relationship between the predicted values and the actual values. The proposed research work can handle multiple tasks like online consulting, continuous patient condition monitoring in general wards and ICUs, telemedicine services, hospital waste disposal and providing service to patients at regular time intervals.

Originality/value

The novelty of the proposed research work lies in the integration of artificial intelligence techniques like fuzzy logic with the multi-sensor-based service robot for easy decision-making and continuous patient monitoring in hospitals in rural areas and to reduce the work stress on medical staff during pandemic situation.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Access

Year

Last 12 months (6)

Content type

1 – 6 of 6