Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 10 June 2021

Jaeyoung Cha, Juyeol Yun and Ho-Yon Hwang

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with…

1943

Abstract

Purpose

The purpose of this paper is to analyze and compare the performances of novel roadable personal air vehicle (PAV) concepts that meet established operational requirements with different types of engines.

Design/methodology/approach

The vehicle configuration was devised considering the dimensions and operational restrictions of the roads, runways and parking lots in South Korea. A folding wing design was adopted for road operations and parking. The propulsion designs considered herein use gasoline, diesel and hybrid architectures for longer-range missions. The sizing point of the roadable PAV that minimizes the wing area was selected, and the rate of climb, ground roll distance, cruise speed and service ceiling requirements were met. For various engine types and mission profiles, the performances of differently sized PAVs were compared with respect to the MTOW, wing area, wing span, thrust-to-weight ratio, wing loading, power-to-weight ratio, brake horsepower and fuel efficiency.

Findings

Unlike automobiles, the weight penalty of the hybrid system because of the additional electrical components reduced the fuel efficiency considerably. When the four engine types were compared, matching the total engine system weight, the internal combustion (IC) engine PAVs had better fuel efficiency rates than the hybrid powered PAVs. Finally, a gasoline-powered PAV configuration was selected as the final design because it had the lowest MTOW, despite its slightly worse fuel efficiency compared to that of the diesel-powered engine.

Research limitations/implications

Although an electric aircraft powered only by batteries most capitalizes on the operating cost, noise and emissions benefits of electric propulsion, it also is most hampered by range limitations. Air traffic integration or any safety, and noise issues were not accounted in this study.

Practical implications

Aircraft sizing is a critical aspect of a system-level study because it is a prerequisite for most design and analysis activities, including those related to the internal layout as well as cost and system effectiveness analyses. The results of this study can be implemented to design a PAV.

Social implications

This study can contribute to the establishment of innovative PAV concepts that can alleviate today’s transportation problems.

Originality/value

This study compared the sizing results of PAVs with hybrid engines with those having IC engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 30 September 2020

Xiaoqian Sun, Sebastian Wandelt and Anming Zhang

The current outbreak of COVID-19 is an unprecedented event in air transportation. In this study, we investigate the impact of COVID-19 on global air transportation through the…

209

Abstract

The current outbreak of COVID-19 is an unprecedented event in air transportation. In this study, we investigate the impact of COVID-19 on global air transportation through the lens of complex networks different at different scales, ranging from worldwide airport networks where airports are nodes and links between airports exist when direct flights exist, to international country networks where countries are contracted as nodes, and to domestic airport networks for representative countries/regions. We focus on the spatial-temporal evolutionary dynamics of COVID-19 in air transportation networks, discovering hidden patterns on flight frequency reduction. Our study provides a comprehensive empirical analysis on the impact of the COVID-19 pandemic on aviation from a complex system perspective.

Details

Journal of International Logistics and Trade, vol. 18 no. 3
Type: Research Article
ISSN: 1738-2122

Keywords

Content available
Book part
Publication date: 29 November 2019

Richard E. Killblane

Abstract

Details

Delivering Victory
Type: Book
ISBN: 978-1-78754-603-5

Open Access
Article
Publication date: 21 July 2023

Harry Edelman, Joel Stenroos, Jorge Peña Queralta, David Hästbacka, Jani Oksanen, Tomi Westerlund and Juha Röning

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the…

Abstract

Purpose

Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the rapid advance in the field of autonomous drones, the development of ground infrastructure has received less attention. Contemporary airport design offers potential solutions for the infrastructure serving autonomous drone services. To that end, this paper aims to construct a framework for connecting air and ground operations for autonomous drone services. Furthermore, the paper defines the minimum facilities needed to support unmanned aerial vehicles for autonomous logistics and the collection of aerial data.

Design/methodology/approach

The paper reviews the state-of-the-art in airport design literature as the basis for analysing the guidelines of manned aviation applicable to the development of ground infrastructure for autonomous drone services. Socio-technical system analysis was used for identifying the service needs of drones.

Findings

The key findings are functional modularity based on the principles of airport design applies to micro-airports and modular service functions can be connected efficiently with an autonomous ground handling system in a sustainable manner addressing the concerns on maintenance, reliability and lifecycle.

Research limitations/implications

As the study was limited to the airport design literature findings, the evolution of solutions may provide features supporting deviating approaches. The role of autonomy and cloud-based service processes are quintessentially different from the conventional airport design and are likely to impact real-life solutions as the area of future research.

Practical implications

The findings of this study provided a framework for establishing the connection between the airside and the landside for the operations of autonomous aerial services. The lack of such framework and ground infrastructure has hindered the large-scale adoption and easy-to-use solutions for sustainable logistics and aerial data collection for decision-making in the built environment.

Social implications

The evolution of future autonomous aerial services should be accessible to all users, “democratising” the use of drones. The data collected by drones should comply with the privacy-preserving use of the data. The proposed ground infrastructure can contribute to offloading, storing and handling aerial data to support drone services’ acceptability.

Originality/value

To the best of the authors’ knowledge, the paper describes the first design framework for creating a design concept for a modular and autonomous micro-airport system for unmanned aviation based on the applied functions of full-size conventional airports.

Details

Facilities , vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 31 December 2006

Minyoung Park, Jung Ung Min and Sang-Yoon Lee

Recent advancements in information and communication technologies have led to the rapid growth of electronic commerce market. In the United States, e-commerce retail sales for…

Abstract

Recent advancements in information and communication technologies have led to the rapid growth of electronic commerce market. In the United States, e-commerce retail sales for 2002 reached $45.6 billion, indicating an increase of 26.9% from 2001 while total retail sales increased 3.1% during the same period. Although e-commerce sales account for only 1.4% of total sales in this country, forecasts show that the magnitude of digital economy will continue to expand. The logistical requirements of e-commerce goods that extend to each customer's address stimulate greater complexity in traditional supply chain management, potentially causing higher costs for freight supply chain participants. To harness the economic potential of e-commerce, it is important to encourage the development of a freight transportation system that will support its steady growth, while avoiding the possible negative effects from the changes in freight transportation. Due to the intrinsic nature of e-commerce goods, advances in home delivery have the potential to promote the growth of e-commerce as well as to create sustainable urban freight transportation systems. Based on the case study of the United States, this paper presents an in-depth discussion of the key challenges arising in home delivery operations, and proposes potential solution strategies that will lead to more efficient and reliable home delivery systems.

Details

Journal of International Logistics and Trade, vol. 4 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 11 October 2018

SungKwan Ku, Hojong Baik and Taehyoung Kim

The surveillance equipment is one of the most important parts for current air traffic control systems. It provides aircraft position and other relevant information including…

1029

Abstract

Purpose

The surveillance equipment is one of the most important parts for current air traffic control systems. It provides aircraft position and other relevant information including flight parameters. However, the existing surveillance equipment has certain position errors between true and detected positions. Operators must understand and account for the characteristics on magnitude and frequency of the position errors in the surveillance systems because these errors can influence the safety of aircraft operation. This study aims to develop the simulation model for analysis of these surveillance position errors to improve the safety of aircrafts in airports.

Design/methodology/approach

This study investigates the characterization of the position errors observed in airport surface detection equipment of an airport ground surveillance system and proposes a practical method to numerically reproduce the characteristics of the errors.

Findings

The proposed approach represents position errors more accurately than an alternative simple approach. This study also discusses the application of the computational results in a microscopic simulation modeling environment.

Practical implications

The surveillance error is analyzed from the radar trajectory data, and a random generator is configured to implement these data. These data are used in the air transportation simulation through an application programing interface, which can be applied to the aircraft trajectory data in the simulation. Subsequently, additionally built environment data are used in the actual simulation to obtain the results from the simulation engine.

Originality/value

The presented surveillance error analysis and simulation with its implementation plan are expected to be useful for air transportation safety simulations.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 27 July 2022

Yuchuan Du, Han Wang, Qian Gao, Ning Pan, Cong Zhao and Chenglong Liu

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all…

1682

Abstract

Purpose

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all modes. A robust transportation resilience is a goal in pursuing transportation sustainability. Under this specified context, while before the perturbations, robustness refers to the degree of the system’s capability of functioning according to its design specifications on integrated modes and routes, redundancy is the degree of duplication of traffic routes and alternative modes to maintain persistency of service in case of perturbations. While after the perturbations, resourcefulness refers to the capacity to identify operational problems in the system, prioritize interventions and mobilize necessary material/ human resources to recover all the routes and modes, rapidity is the speed of complete recovery of all modes and traffic routes in the urban area. These “4R” are the most critical components of urban integrated resilience.

Design/methodology/approach

The trends of transportation resilience's connotation, metrics and strategies are summarized from the literature. A framework is introduced on both qualitative characteristics and quantitative metrics of transportation resilience. Using both model-based and mode-free methodologies that measure resilience in attributes, topology and system performance provides a benchmark for evaluating the mechanism of resilience changes during the perturbation. Correspondingly, different pre-perturbation and post-perturbation strategies for enhancing resilience under multi-mode scenarios are reviewed and summarized.

Findings

Cyber-physic transportation system (CPS) is a more targeted solution to resilience issues in transportation. A well-designed CPS can be applied to improve transport resilience facing different perturbations. The CPS ensures the independence and integrity of every child element within each functional zone while reacting rapidly.

Originality/value

This paper provides a more comprehensive understanding of transportation resilience in terms of integrated urban transport. The fundamental characteristics and strategies for resilience are summarized and elaborated. As little research has shed light on the resilience concepts in integrated urban transport, the findings from this paper point out the development trend of a resilient transportation system for digital and data-driven management.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 13 February 2020

John A. Kearby, Ryan D. Winz, Thom J. Hodgson, Michael G. Kay, Russell E. King and Brandon M. McConnell

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of…

3167

Abstract

Purpose

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of those missions.

Design/methodology/approach

It formulates a time-staged network model of the South Korean noncombatant evacuation system as a mixed integer linear program to determine an optimal flow configuration that minimizes the time required to complete an evacuation. This solution considers the capacity and resource constraints of multiple transportation modes and effectively allocates the limited assets across a time-staged network to create a feasible evacuation plan. That solution is post-processed and a vehicle routing procedure then produces a high resolution schedule for each individual asset throughout the entire duration of the NEO.

Findings

This work makes a clear improvement in the decision-making and resource allocation methodology currently used in a NEO on the Korea peninsula. It immediately provides previously unidentifiable information regarding the scope and requirements of a particular evacuation scenario and then produces an executable schedule for assets to facilitate mission accomplishment.

Originality/value

The significance of this work is not relegated only to evacuation operations on the Korean peninsula; there are numerous other NEO and natural disaster related scenarios that can benefit from this approach.

Details

Journal of Defense Analytics and Logistics, vol. 4 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 10 December 2020

Dave C. Longhorn and John Dale Stobbs

This paper aims to propose two solution approaches to determine the number of ground transport vehicles that are required to ensure the on-time delivery of military equipment…

Abstract

Purpose

This paper aims to propose two solution approaches to determine the number of ground transport vehicles that are required to ensure the on-time delivery of military equipment between origin and destination node pairs in some geographic region, which is an important logistics problem at the US Transportation Command.

Design/methodology/approach

The author uses a mathematical program and a traditional heuristic to provide optimal and near-optimal solutions, respectively. The author also compares the approaches for random, small-scale problems to assess the quality and computational efficiency of the heuristic solution, and also uses the heuristic to solve a notional, large-scale problem typical of real problems.

Findings

This work helps analysts identify how many ground transport vehicles are needed to meet cargo delivery requirements in any military theater of operation.

Research limitations/implications

This research assumes all problem data is deterministic, so it does not capture variations in requirements or transit times between nodes.

Practical implications

This work provides prescriptive details to military analysts and decision-makers in a timely manner. Prior to this work, insights for this type of problem were generated using time-consuming simulation taking about a week and often involving trial-and-error.

Originality/value

This research provides new methods to solve an important logistics problem. The heuristic presented in this paper was recently used to provide operational insights about ground vehicle requirements to support a geographic combatant command and to inform decisions for railcar recapitalization within the US Army.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 31 December 2010

Min-Jung Kim, Seock-Jin Hong and Hun-Koo Ha

This study estimated greenhouse gas emissions from aviation transportation and sought systems that could manage these emissions based on the IPCC guidelines to prepare for…

Abstract

This study estimated greenhouse gas emissions from aviation transportation and sought systems that could manage these emissions based on the IPCC guidelines to prepare for greenhouse gas regulations on international airlines. For this purpose, policies to reduce greenhouse gas emissions from aviation transportation were developed based on international agreements and the cases of advanced countries. In addition, marginal abatement costs and greenhouse gas reduction measures were derived for the effective execution of these policies. While estimating greenhouse gas emissions from aviation transportation, it was found that there has been an average increase of 3.9% and 12.9% for domestic and international flights, indicating that it is urgent that we prepare global greenhouse gas regulations. The estimated marginal abatement cost of greenhouse gas from airplanes was approximately. USD 123, and this amount could be used to decide the price of emission rights, the amount of carbon tax, and could be referred to when distributing incentives for voluntary agreements.

The measures to reduce greenhouse gas emissions for aviation transportation were classified into four types: voluntary agreements, international collaboration, greenhouse gas reduction technology and operation process development, and application of emission trading and carbon tax.

Details

Journal of International Logistics and Trade, vol. 8 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

1 – 10 of over 1000