Search results

1 – 10 of 33
Article
Publication date: 26 April 2024

Alaa Alsherfawi Aljazaerly, Seth Asare Okyere, Stephen Leonard Mensah, Matthew Abunyewah, Louis Kusi Frimpong and Michihiro Kita

Integrating and advancing social sustainability is foundational to achieving the urban sustainable development goals. Given the rapid transformation of cities in the Mediterranean…

Abstract

Purpose

Integrating and advancing social sustainability is foundational to achieving the urban sustainable development goals. Given the rapid transformation of cities in the Mediterranean region, this study sought to assess residents' evaluation of social sustainability in two socio-spatially diverse neighbourhoods of metropolitan Istanbul.

Design/methodology/approach

A questionnaire survey, adapted from an empirically well-tested and robust social sustainability framework, was used to collect data from 197 residents from Balat and Rasimpasa neighbourhoods in Metropolitan Istanbul. The study then employed quantitative analytical techniques such as independent sample t-tests and Pearson correlation to analyse the sample data.

Findings

In both neighbourhoods, accessibility and participation were ranked the highest and lowest dimensions of social sustainability, respectively. However, the t-test analysis revealed a statistically significant difference between the two neighbourhoods regarding social networking and interaction, safety and security and participation. The differences align with emerging studies on urban social sustainability in the Mediterranean and European cities that when considered from urban spatial contexts, significant differences emerge from a social network and safety perspective.

Practical implications

Our study invites urban planners and policy makers attention to and emphasise on lowly evaluated social sustainability dimensions such as participation in their efforts to promote sustainable urban development at the neighbourhood level. We reason that opening the decision-making process to include diverse voices and experiences of residents through participatory workshops might offer opportunities for context-specific, citizen-led urban planning and design strategies that are socially sustainable.

Originality/value

Previous studies have not fully accounted for how various socio-spatial contexts at the neighbourhood level shape differential evaluation of social sustainability. This paper extends the emerging work on urban social sustainability by situating residents’ evaluation of social sustainability indicators across two unique neighbourhoods with gridded and organic spatial characteristics in Istanbul. This paper is an important addition to ongoing work on how spatial organisation of neighbourhoods can influence experiences of social sustainability from an urban planning and design perspective.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 25 April 2024

Tulsi Pawan Fowdur and Ashven Sanghan

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical…

Abstract

Purpose

The purpose of this paper is to develop a blockchain-based data capture and transmission system that will collect real-time power consumption data from a household electrical appliance and transfer it securely to a local server for energy analytics such as forecasting.

Design/methodology/approach

The data capture system is composed of two current transformer (CT) sensors connected to two different electrical appliances. The CT sensors send the power readings to two Arduino microcontrollers which in turn connect to a Raspberry-Pi for aggregating the data. Blockchain is then enabled onto the Raspberry-Pi through a Java API so that the data are transmitted securely to a server. The server provides real-time visualization of the data as well as prediction using the multi-layer perceptron (MLP) and long short term memory (LSTM) algorithms.

Findings

The results for the blockchain analysis demonstrate that when the data readings are transmitted in smaller blocks, the security is much greater as compared with blocks of larger size. To assess the accuracy of the prediction algorithms data were collected for a 20 min interval to train the model and the algorithms were evaluated using the sliding window approach. The mean average percentage error (MAPE) was used to assess the accuracy of the algorithms and a MAPE of 1.62% and 1.99% was obtained for the LSTM and MLP algorithms, respectively.

Originality/value

A detailed performance analysis of the blockchain-based transmission model using time complexity, throughput and latency as well as energy forecasting has been performed.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 April 2024

Bo Zhang, Yuqian Zheng, Zhiyuan Cui, Dongdong Song, Faqian Liu and Weihua Li

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between…

Abstract

Purpose

The impact of rolling on the performance of micro arc oxidation (MAO) coatings on ZM5 alloy has been underreported. The purpose of this study is to explore the correlation between rolling and the failure mechanism of MAO coatings in greater depth.

Design/methodology/approach

The influence of rolling on the corrosion and wear properties of MAO coating was investigated by phase structure, bond strength test (initial bond strength and wet adhesion), electrochemical impedance spectroscopy and wear test. The change of the surface electrochemical properties was studied by first principles analysis.

Findings

The results showed that the MAO coating on rolled alloy had better corrosion and wear resistance compared to cast alloy, although the structure and component content of two kinds of MAO coating are nearly identical. The difference in interface bonding between MAO coating and Mg substrate is the primary factor contributing to the disparity in performance between the two types of samples. Finally, the impact of the rolling process on MAO coating properties is explained through first-principle calculation.

Originality/value

A comprehensive explanation of the impact of the rolling process on MAO coating properties will provide substantial support for enhancing the application of Mg alloy anticorrosion.

Graphical abstract

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 April 2024

Xiangkai Zhang, Renxin Wang, Wenping Cao, Guochang Liu, Haoyu Tan, Haoxuan Li, Jiaxing Wu, Guojun Zhang and Wendong Zhang

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals…

Abstract

Purpose

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals can achieve long-distance propagation in water. To meet the requirements of long-distance underwater detection and communication, this paper aims to propose an micro-electro-mechanical system (MEMS) flexible conformal hydrophone for low-frequency underwater acoustic signals. The substrate of the proposed hydrophone is polyimide, with silicon as the piezoresistive unit.

Design/methodology/approach

This paper proposes a MEMS heterojunction integration process for preparing flexible conformal hydrophones. In addition, sensors prepared based on this process are non-contact flexible sensors that can detect weak signals or small deformations.

Findings

The experimental results indicate that making devices with this process cannot only achieve heterogeneous integration of silicon film, metal wire and polyimide, but also allow for customized positions of the silicon film as needed. The success rate of silicon film transfer printing is over 95%. When a stress of 1 Pa is applied on the x-axis or y-axis, the maximum stress on Si as a pie-zoresistive material is above, and the average stress on the Si film is around.

Originality/value

The flexible conformal vector hydrophone prepared by heterogeneous integration technology provides ideas for underwater acoustic communication and signal acquisition of biomimetic flexible robotic fish.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 April 2024

Jinsong Zhang, Xinlong Wang, Chen Yang, Mingkang Sun and Zhenwei Huang

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Abstract

Purpose

This study aims to investigate the noise-inducing characteristics during the start-up process of a mixed-flow pump and the impact of different start-up schemes on pump noise.

Design/methodology/approach

This study conducted numerical simulations on the mixed-flow pump under different start-up schemes and investigated the flow characteristics and noise distribution under these schemes.

Findings

The results reveal that the dipole noise is mainly caused by pressure fluctuations, while the quadrupole noise is mainly generated by the generation, development and breakdown of vortices. Additionally, the noise evolution characteristics during the start-up process of the mixed-flow pump can be divided into the initial stage, stable growth stage, impulse stage and stable operation stage.

Originality/value

The findings of this study can provide a theoretical basis for the selection of start-up schemes for mixed-flow pumps, reducing flow noise and improving the operational stability of mixed-flow pumps.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2024

Mamun Mishra and Bibhuti Bhusan Pati

Islanding detection has become a serious concern due to the extensive integration of renewable energy sources. The non-detection zone (NDZ) and system-specific applicability…

Abstract

Purpose

Islanding detection has become a serious concern due to the extensive integration of renewable energy sources. The non-detection zone (NDZ) and system-specific applicability, which are the two major issues with the islanding detection methods, are addressed here. The purpose of this paper is to devise an islanding detection method with zero NDZ and, which will be applicable to all types of renewable energy sources using the sequence components of the point of common coupling voltage.

Design/methodology/approach

Here, a parameter using the sequence components is derived to devise an islanding detection method. The parameter derived from the sequence components of point of common coupling voltage is analysed using wavelet transform. Various operating conditions, such as islanding and non-islanding, are considered for several test systems to evaluate the performance of the proposed method. All the simulations are carried out in Simulink/MATLAB environment.

Findings

The results showed that the proposed method has zero NDZ for both inverter- and synchronous generator-based renewable energy sources. In addition, the proposed method works satisfactorily as per the IEEE 1547 standards requirement.

Originality/value

Performance of the proposed method has been tested in several test systems and is found to be better than some conventional methods.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 May 2024

Arvinder Kaur and Vikas Sharma

Today’s world is struggling with the hardship of climate change that has drastically disturbed human life, wildlife and the earth’s biological system. This study aims to show how…

Abstract

Purpose

Today’s world is struggling with the hardship of climate change that has drastically disturbed human life, wildlife and the earth’s biological system. This study aims to show how implementing climate change mitigation strategies and environmental protection measures can ensure sustainable development through collaborative efforts between governmental authorities and the nation’s populace.

Design/methodology/approach

An extensive literature review of studies is conducted from across the world concentrating on holistic, sustainable development, enabling a showcase of various conferences, action plans initiated and resolutions passed. VOSviewer software is used to quantify the results of bibliometric analysis and cluster analysis. A total of 260 research studies released between 1993 and 2022 on the Scopus platform are quantified in terms of topmost publications, collaborations among authors, citations index and year-wise publication. The search string has keywords including “climate change,” “sustainable development” and “environment protection.”

Findings

The study results revealed a steep increase in research publications in the last three years, from 2017 to 2021, which serves as the basis of the emergence of high-impact articles. The most cited document in this context throws light on assessing vulnerability to climatic risk and building adaptive capacity. It also draws attention to voluntary carbon markets’ rationale while condemning emission trading systems for climate change due to structural flaws, negative consequences and questionable emission-cutting effectiveness. Low energy demand, zero energy buildings and shared socioeconomic pathways should be implemented as strategies for sustainable development.

Practical implications

This study provides a significant opportunity to construct a valuable addition to mitigate climate change. Also, it shows a positive and significant correlation between mitigation and adaptation policies by analyzing publication efforts worldwide considering local climate risks and national adaptation mandates.

Originality/value

The originality of this study lies in its comprehensive approach, combining literature review, bibliometric analysis and cluster analysis to provide insights into current research trends, challenges and potential strategies for addressing climate change and promoting sustainable development. The study’s emphasis on the correlation between mitigation and adaptation policies adds practical significance to its findings.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 2 May 2024

Bikesh Manandhar, Thanh-Canh Huynh, Pawan Kumar Bhattarai, Suchita Shrestha and Ananta Man Singh Pradhan

This research is aimed at preparing landslide susceptibility using spatial analysis and soft computing machine learning techniques based on convolutional neural networks (CNNs)…

Abstract

Purpose

This research is aimed at preparing landslide susceptibility using spatial analysis and soft computing machine learning techniques based on convolutional neural networks (CNNs), artificial neural networks (ANNs) and logistic regression (LR) models.

Design/methodology/approach

Using the Geographical Information System (GIS), a spatial database including topographic, hydrologic, geological and landuse data is created for the study area. The data are randomly divided between a training set (70%), a validation (10%) and a test set (20%).

Findings

The validation findings demonstrate that the CNN model (has an 89% success rate and an 84% prediction rate). The ANN model (with an 84% success rate and an 81% prediction rate) predicts landslides better than the LR model (with a success rate of 82% and a prediction rate of 79%). In comparison, the CNN proves to be more accurate than the logistic regression and is utilized for final susceptibility.

Research limitations/implications

Land cover data and geological data are limited in largescale, making it challenging to develop accurate and comprehensive susceptibility maps.

Practical implications

It helps to identify areas with a higher likelihood of experiencing landslides. This information is crucial for assessing the risk posed to human lives, infrastructure and properties in these areas. It allows authorities and stakeholders to prioritize risk management efforts and allocate resources more effectively.

Social implications

The social implications of a landslide susceptibility map are profound, as it provides vital information for disaster preparedness, risk mitigation and landuse planning. Communities can utilize these maps to identify vulnerable areas, implement zoning regulations and develop evacuation plans, ultimately safeguarding lives and property. Additionally, access to such information promotes public awareness and education about landslide risks, fostering a proactive approach to disaster management. However, reliance solely on these maps may also create a false sense of security, necessitating continuous updates and integration with other risk assessment measures to ensure effective disaster resilience strategies are in place.

Originality/value

Landslide susceptibility mapping provides a proactive approach to identifying areas at higher risk of landslides before any significant events occur. Researchers continually explore new data sources, modeling techniques and validation approaches, leading to a better understanding of landslide dynamics and susceptibility factors.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 May 2024

Xi Liang Chen, Zheng Yu Xie, Zhi Qiang Wang and Yi Wen Sun

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the…

Abstract

Purpose

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the overall structural stiffness requirements and sensor performance requirements in robot engineering applications, this paper aims to propose a Y-type six-axis force/torque sensor.

Design/methodology/approach

The performance indicators such as each component sensitivities and stiffnesses of the sensor were selected as optimization objectives. The multiobjective optimization equations were established. A multiple quadratic response surface in ANSYS Workbench was modeled by using the central composite design experimental method. The optimal manufacturing structural parameters were obtained by using multiobjective genetic algorithm.

Findings

The sensor was optimized and the simulation results show that the overload resistance of the sensor is 200%F.S., and the axial stiffness, radial stiffness, bending stiffness and torsional stiffness are 14.981 kN/mm, 16.855 kN/mm, 2.0939 kN m/rad and 6.4432 kN m/rad, respectively, which meet the design requirements, and the sensitivities of each component of the optimized sensor have been well increased to be 2.969, 2.762, 4.010, 2.762, 2.653 and 2.760 times as those of the sensor with initial structural parameters. The sensor prototype with optimized parameters was produced. According to the calibration experiment of the sensor, the maximum Class I and II errors and measurement uncertainty of each force/torque component of the sensor are 1.835%F.S., 1.018%F.S. and 1.606%F.S., respectively. All of them are below the required 2%F.S.

Originality/value

Hence, the conclusion can be drawn that the sensor has excellent comprehensive performance and meets the expected practical engineering requirements.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 April 2024

Vasudha Hegde, Narendra Chaulagain and Hom Bahadur Tamang

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and…

Abstract

Purpose

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and wildlife conservation. Considering its vast applications, this study aims to design, simulate, fabricate and test a bidirectional acoustic sensor having two cantilever structures coated with piezoresistive material for sensing has been designed, simulated, fabricated and tested.

Design/methodology/approach

The structure is a piezoresistive acoustic pressure sensor, which consists of two Kapton diaphragms with four piezoresistors arranged in Wheatstone bridge arrangement. The applied acoustic pressure causes diaphragm deflection and stress in diaphragm hinge, which is sensed by the piezoresistors positioned on the diaphragm. The piezoresistive material such as carbon or graphene is deposited at maximum stress area. Furthermore, the Wheatstone bridge arrangement has been formed to sense the change in resistance resulting into imbalanced bridge and two cantilever structures add directional properties to the acoustic sensor. The structure is designed, fabricated and tested and the dimensions of the structure are chosen to enable ease of fabrication without clean room facilities. This structure is tested with static and dynamic calibration for variation in resistance leading to bridge output voltage variation and directional properties.

Findings

This paper provides the experimental results that indicate sensor output variation in terms of a Wheatstone bridge output voltage from 0.45 V to 1.618 V for a variation in pressure from 0.59 mbar to 100 mbar. The device is also tested for directionality using vibration source and was found to respond as per the design.

Research limitations/implications

The fabricated devices could not be tested for practical acoustic sources due to lack of facilities. They have been tested for a vibration source in place of acoustic source.

Practical implications

The piezoresistive bidirectional sensor can be used for detection of direction of the sound source.

Social implications

In defense applications, it is important to detect the direction of the acoustic signal. This sensor is suited for such applications.

Originality/value

The present paper discusses a novel yet simple design of a cantilever beam-based bidirectional acoustic pressure sensor. This sensor fabrication does not require sophisticated cleanroom for fabrication and characterization facility for testing. The fabricated device has good repeatability and is able to detect the direction of the acoustic source in external environment.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Access

Year

Last week (33)

Content type

Earlycite article (33)
1 – 10 of 33