Search results

1 – 10 of 68
Article
Publication date: 1 September 1955

Over 3,000 scientists, technologists and industrialists attended the 1955 World Petroleum Congress, held in Rome, Italy, from June 6 to 17. Delegates representing 45 countries…

Abstract

Over 3,000 scientists, technologists and industrialists attended the 1955 World Petroleum Congress, held in Rome, Italy, from June 6 to 17. Delegates representing 45 countries read papers covering all aspects of the petroleum industry, including geology and geophysics, drilling and production, oil processing, the production of chemicals from petroleum, the composition of petroleum, utilisation of petroleum products, and other more general subjects. Abstracts of papers included in the corrosion section are given below, and these discuss problems of graphite formation, the occlusion of hydrogen, static electricity, and corrosion inhibition in refinery equipment.

Details

Anti-Corrosion Methods and Materials, vol. 2 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 27 June 2023

Ao Zhang, Jian Zhang, Mingjun Zhang, Junyi Liu and Ping Peng

This paper aims to investigate the effect and mechanism of O atom single doping, Ce and O atoms co-doping on the interfacial microscopic behavior of brazed Ni-Cr/diamond.

Abstract

Purpose

This paper aims to investigate the effect and mechanism of O atom single doping, Ce and O atoms co-doping on the interfacial microscopic behavior of brazed Ni-Cr/diamond.

Design/methodology/approach

Using first-principles calculations, the embedding energy, work of separation, interfacial energy and electronic structures of Ni-Cr-O/diamond and Ni-Cr-O-Ce/diamond interface models were calculated. Then, the effect of Ce and O co-doping was experimentally verified through brazed diamond with CeO2-added Ni-Cr filler alloy.

Findings

The results show that O single-doping reduces the interfacial bonding strength between Ni-Cr filler alloy and diamond but enhances its interfacial stability to some extent. However, the Ce and O co-doping simultaneously enhances the interfacial bonding strength and stability between Ni-Cr filler alloy and diamond. The in-situ formed Ce-O oxide at interface impedes the direct contact between diamond and Ni-Cr filler alloy, which weakens the catalytic effect of Ni element on diamond graphitization. It is experimentally found that the fine rod-shaped Cr3C2 and Cr7C3 carbides are generated on diamond surface brazed with CeO2-added Ni-Cr filler alloy. After grinding, the brazed diamond grits, brazed with CeO2-added Ni-Cr filler alloy, present few fracture and the percentage of intact diamond reaches 67.8%. Compared to pure Ni-Cr filler alloy, the brazed diamond with CeO2-added Ni-Cr filler alloy exhibit the better wear resistance and the slighter thermal damage.

Originality/value

Using first-principles calculations, the effect of Ce and O atoms co-doping on the brazed diamond with Ni-Cr filler alloy is investigated, and the calculation results are verified experimentally. Through the first-principles calculations, the interface behavior and reaction mechanism between diamond and filler alloy can be well disclosed, and the composition of filler alloy can be optimized, which will be beneficial for synergistically realizing the enhanced interface bonding and reduced thermal damage of brazed diamond.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 July 2022

Saikrishnan G., Jayakumari L.S. and Vijay R.

The purpose of this paper is to deal with the tribological study on the brake pads developed using various purity-based graphitized graphite.

Abstract

Purpose

The purpose of this paper is to deal with the tribological study on the brake pads developed using various purity-based graphitized graphite.

Design/methodology/approach

This paper deals with developing copper-free brake pads by using graphite as a key lubricant produced using a graphitization process with purity percentages (85, 90 and 95%). The brake pads were developed using traditional manufacturing processes and evaluated for their physical, chemical, thermal and mechanical properties as per industrial standards. Fade and recovery characteristics were analyzed using a full-scale inertia brake dynamometer as per JASO-C-406. The scanning electron microscope was used to analyze the worn surfaces of the brake pads.

Findings

The testing findings reveal that the brake pads with 95% graphitized graphite showed better shear strength with good adhesion levels and lesser density, hardness, acetone extract value, loss on ignition and higher porosity. Effectiveness studies of brake pads with graphite (95% graphitized) showed better results at higher pressure speed conditions than others because of better plateau formation and adequate lubrication.

Originality/value

This paper discusses graphitized graphite of different purity influences brake pad's tribological performance by modifying tribo-films and reducing friction undulations.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 March 2015

Adriaan Bernardus Spierings, Christian Leinenbach, Christoph Kenel and Konrad Wegener

The purpose of this paper is a feasibility study that was performed to investigate the basic processability of a diamond-containing metal matrix. Powder-bed-based additive…

1378

Abstract

Purpose

The purpose of this paper is a feasibility study that was performed to investigate the basic processability of a diamond-containing metal matrix. Powder-bed-based additive manufacturing processes such as selective laser melting (SLM) offer a huge degree of freedom, both in terms of part design and material options. In that respect, mixtures of different powders can offer new ways for the manufacture of materials with tailored properties for special applications such as metal-based cutting or grinding tools with incorporated hard phases.

Design/methodology/approach

A two-step approach was used to first investigate the basic SLM-processability of a Cu-Sn-Ti-Zr alloy, which is usually used for the active brazing of ceramics and superhard materials. After the identification of a suitable processing window, the processing parameters were then applied to a mixture of this matrix material with 10-20 volume per cent artificial, Ni-coated mono-crystalline diamonds.

Findings

Even though the processing parameters were not yet optimized, stable specimens out of the matrix material could be produced. Also, diamond-containing mixtures with the matrix material resulted in stable specimens, where the diamonds survived the layer-wise build process with the successive heat input, as almost no graphitization was observed. The diamond particles are fully embedded in the Cu-Sn-Ti-Zr matrix material. The outer part of the diamonds partly dissolves in the matrix during the SLM process, forming small TiC particles and most likely a thin TiC layer around the diamond particles.

Originality/value

The feasibility study approved the SLM processing capabilities of a metal-diamond composite. Although some cracking phenomena sill occur, this seems to be an interesting and promising way to create new abrasive tools with added value in terms of internal and local lubrication supply, tooling temperature control and improved tooling durability.

Details

Rapid Prototyping Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 December 2022

Bahubali Babanrao Sangame, Y. Prasannatha Reddy and Vasudev D. Shinde

The final properties of ductile iron are decided by the inoculant processing while pouring the melt. The shape and size of nodules generated during solidification are of paramount…

Abstract

Purpose

The final properties of ductile iron are decided by the inoculant processing while pouring the melt. The shape and size of nodules generated during solidification are of paramount importance in solidification of ductile cast iron. The purpose of this study is to examine the effect of different inoculant addition on the solidification of ductile cast iron melt through thermal analysis.

Design/methodology/approach

Thermal analysis has recently grown as a tool for modeling the solidification behavior of ductile cast irons. Iron properties will be predicted by analyzing the cooling curve patterns of the melts and predicting the related effectiveness of inoculant processing. In this study, thermal analysis is used to evaluate the need for inoculation.

Findings

The amount and type of inoculation will affect the amount of undercooling during the solidification of ductile cast iron. It is found that the addition of 0.1 to 0.4 Wt.% inoculant lowers the austenite dendrite formation starting temperature while increasing the eutectic freezing temperature. Microstructure analysis revealed that the addition of inoculation increases the nodule count from 103 to 242 nodules. The beneficial effects of inoculation are sustained by an improved graphitization factor, which shows the formation of graphite nodules in the second phase of the eutectic reaction.

Originality/value

The inoculation treatment has improved metallurgical occurrences such as carbide to graphite conversion, graphite microstructure control, graphite nodule count at the start of solidification and the last stage of solidification, which determines the soundness of casting. The foundry industry can follow these steps for monitoring the solidification of ductile iron castings.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 March 1988

G.A. Green and F.J. Tribe

Submarine propeller shaft seals operate under onerous conditions in an aggressive environment and their effective life is vitally dependent upon the durability of the seal face…

Abstract

Submarine propeller shaft seals operate under onerous conditions in an aggressive environment and their effective life is vitally dependent upon the durability of the seal face materials. The combination of physical and mechanical properties of certain carbon‐carbon composites makes them potentially suitable for this critical service, but a literature search revealed no prior reference to their deployment in any liquid sealing application nor, indeed, to their behaviour in an aqueous environment. In consequence, a programme of work has been carried out to determine the effect of prolonged exposure to high‐pressure sea water upon their properties, and to assess their performance when run in a seal test rig against a variety of counter surfaces. The assessments were made under a reproducible condition of boundary lubrication stabilised by control of interface torque. The effects of composite anisotrophy and of graphitisation have been examined using specimen rings with the direction of fibre lay‐up either in, or normal to, the rubbing plane, and in the graphitised or non‐graphitised condition. It has been shown that the carbon‐carbon composites are stable in water and perform well as a seal face material; however, current high procurement cost will probably restrict their use to the more exacting applications.

Details

Industrial Lubrication and Tribology, vol. 40 no. 3
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 2 October 2017

Peng Xia, Kunjie Li, Fangui Zeng, Xiong Xiao, Jianliang Zhang, Jianhua Xiang and Beilei Sun

Pyrolysis for coal gas generation changes the composition, pore structure, permeability and adsorption capacity of coal. This work aims to discuss the utilization of coal…

Abstract

Purpose

Pyrolysis for coal gas generation changes the composition, pore structure, permeability and adsorption capacity of coal. This work aims to discuss the utilization of coal pyrolysis on enhancing coalbed methane (CBM) production in the Gujiao area, Shanxi province, China.

Design/methodology/approach

This research was conducted mainly by the methods of thermogravimetry mass spectrometry (TG-MS) analysis, liquid nitrogen adsorption experiment and methane isothermal adsorption measurement.

Findings

The results can be concluded as that 400-700°C is the main temperature range for generating CH4. Pore volume and specific surface area increase with increasing temperature; however, the proportion of micro pore, transition pore and macro pore has no difference. The optimum temperature for enhancing CBM production should be letter than 600°C because the sedimentation of tar and other products will occupy some pores and fissures after 600°C.

Originality/value

Here in, to accurately recognize the suitable maximum temperature for heating development, a method enhancing CBM production, TG-MS, was adopted to analyze the products and the weight loss of coals with different ranks in the Gujiao area at temperature of 30-1,100°C. And then the pore structure, porosity, permeability, methane adsorption capacity and thermal maturity of coals during pyrolysis were investigated with increased temperature from 30°C to 750°C. On these bases, the favorable condition for enhancing CBM production and the thermal evolution of coal were recognized.

Details

World Journal of Engineering, vol. 14 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 1972

L.L. Ban and W.M. Hess

This is the first officially‐released account following studies conducted at Columbian's recently‐opened laboratory

1038

Abstract

This is the first officially‐released account following studies conducted at Columbian's recently‐opened laboratory

Details

Pigment & Resin Technology, vol. 1 no. 1
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 6 September 2024

Nour Mani, Nhiem Tran, Alan Jones, Azadeh Mirabedini, Shadi Houshyar and Kate Fox

The purpose of this study is therefore to detail an additive manufacturing process for printing TiD parts for implant applications. Titanium–diamond (TiD) is a new composite that…

Abstract

Purpose

The purpose of this study is therefore to detail an additive manufacturing process for printing TiD parts for implant applications. Titanium–diamond (TiD) is a new composite that provides biocompatible three-dimensional multimaterial structures. Thus, the authors report a powder-deposition and print optimization strategy to overcome the dual-functionality gap by printing bulk TiD parts. However, despite favorable customization outcomes, relatively few additive manufacturing (AM) feedstock powders offer the biocompatibility required for medical implant and device technologies.

Design/methodology/approach

AM offers a platform to fabricate customized patient-specific parts. Developing feedstock that can be 3D printed into specific 3D structures while providing a favorable interface with the human tissue remains a challenge. Using laser metal deposition, feedstock powder comprising diamond and titanium was co-printed into TiD parts for mechanical testing to determine optimal manufacturing parameters.

Findings

TiD parts were fabricated comprising 30% and 50% diamond. The composite powder had a Hausner ratio of 1.13 and 1.21 for 30% and 50% TiD, respectively. The flow analysis (Carney flow) for TiD 30% and 50% was 7.53 and 5.15 g/s. The authors report that the printing-specific conditions significantly affect the integrity of the printed part and thus provide the optimal manufacturing parameters for structural integrity as determined by micro-computed tomography, nanoindentation and biocompatibility of TiD parts. The hardness, ultimate tensile strength and yield strength for TiD are 4–6 GPa (depending on build position), 426 MPa and 375 MPa, respectively. Furthermore, the authors show that increasing diamond composition to 30% results in higher osteoblast viability and lower bacteria count than titanium.

Originality/value

In this study, the authors provide a clear strategy to manufacture TiD parts with high integrity, performance and biocompatibility, expanding the material feedstock library and paving the way to customized diamond implants. Diamond is showing strong potential as a biomedical material; however, upscale is limited by conventional techniques. By optimizing AM as the avenue to make complex shapes, the authors open up the possibility of patient-specific diamond implant solutions.

Graphical abstarct

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 March 2017

Jun Liu, Zhinan Zhang, Zhe Ji and Youbai Xie

This paper aims to investigate the effects of reciprocating frequency, large normal load on friction and wear behavior of hydrogenated diamond-like carbon (H-DLC) coating against…

Abstract

Purpose

This paper aims to investigate the effects of reciprocating frequency, large normal load on friction and wear behavior of hydrogenated diamond-like carbon (H-DLC) coating against Ti-6Al-4V ball under dry and lubricated conditions.

Design/methodology/approach

The friction and wear mechanisms are analyzed by scanning electron microscope, energy dispersive spectroscopy and Raman spectroscopy.

Findings

The results show that as reciprocating frequency increases under lubricated conditions, the friction coefficient decreases first and then increases. When the reciprocating frequency is 2.54 Hz, the value of friction coefficient reaches the minimum. The friction reduction is because of the transformation from sp3 to sp2, the formation of transfer layer on Ti-6Al-4V ball and the reduction in viscous friction, whereas the increase of friction coefficient is related to wear. In dry conditions, the friction coefficient is between 0.06 and 0.1. And, the service life of H-DLC coating decreases with the increase in reciprocating frequency and normal load.

Research limitations/implications

It is confirmed that adding the lubricant could prolong the service life of H-DLC coating and reduce friction and wear efficiently. And, the wear mechanisms under dry and lubricated conditions encompass abrasive wear and adhesive wear.

Originality/value

The results are helpful for application of diamond-like carbon coating.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 68