Search results

1 – 6 of 6
Article
Publication date: 24 July 2024

Ugur Mecid Dilberoglu, Ulas Yaman and Melik Dolen

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating…

Abstract

Purpose

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating smooth surfaces on FFF specimens and establish trends about specific parameters.

Design/methodology/approach

In this study, PLA and ABS samples fabricated by FFF are subjected to side milling in several experiments. Achievable surface quality is studied in relation to material properties, milling parameters, tooling and macrostructure. The surface finish is quantified using profile measurements of the processed surfaces. The study classifies the created chips into categories that can be used as criteria for the anticipated quality. Spectral analysis is used to examine the various surface formation modes. Thermal monitoring is used to track chip formation and surface temperature changes during the milling process.

Findings

This study reveals that effective heat dissipation through proper chip formation is vital for maintaining high surface quality. Recommended methodology demands using a tool with a substantial flute volume, using high positive rake and clearance angles and optimizing the feed-per-tooth and cutting speed. Disregarding these guidelines may cause the surface temperature to surpass the material’s glass transition, resulting in inferior quality characterized by viscous folding. For FFF thermoplastics, optimal milling can bring the average surface roughness down to the micron level.

Originality/value

This research contributes to the field by providing valuable guidance for achieving superior results in milling FFF parts. This study includes a concise summary of the theoretically relevant insights, presents verification of the key factors by qualitative analysis and offers optimal milling parameters for 3D-printed thermoplastics based on systematic experiments.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 November 2023

Dravesh Yadav, Ravi Sastri Ayyagari and Gaurav Srivastava

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Abstract

Purpose

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Design/methodology/approach

Finite element simulations were performed using ABAQUS 6.14. The accuracy of the numerical model was established through experimental and numerical results available in the literature. The proposed numerical model was utilised to study the effect of cavity radiation on the thermal response of aluminium hollow tubes and facade system. Different scenarios were considered to assess the applicability of the commonly used lumped capacitance heat transfer model.

Findings

The effects of cavity radiation were found to be significant for non-uniform fire exposure conditions. The maximum temperature of a hollow aluminium tube with 1-sided fire exposure was found to be 86% greater when cavity radiation was considered. Further, the time to attain critical temperature under non-uniform fire exposure, as calculated from the conventional lumped heat capacity heat transfer model, was non-conservative when compared to that predicted by the proposed simulation approach considering cavity radiation. A metal temperature of 550 °C was attained about 18 min earlier than what was calculated by the lumped heat capacitance model.

Research limitations/implications

The present study will serve as a basis for the study of the effects of cavity radiation on the thermo-mechanical response of aluminium hollow tubes and facade systems. Such thermo-mechanical analyses will enable the study of the effects of cavity radiation on the failure mechanisms of facade systems.

Practical implications

Cavity radiation was found to significantly affect the thermal response of hollow aluminium tubes and façade systems. In design processes, it is essential to consider the potential consequences of non-uniform heating situations, as they can have a significant impact on the temperature of structures. It was also shown that the use of lumped heat capacity heat transfer model in cases of non-uniform fire exposure is unsuitable for the thermal analysis of such systems.

Originality/value

This is the first detailed investigation of the effects of cavity radiation on the thermal response of aluminium tubes and façade systems for different fire exposure conditions.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 16 July 2024

Shrushti Maheshwari, Anand Kumar, Pyaarjeet Singh Chaurasia, T. Niranjan, Zafar Alam and Sarthak S. Singh

This study aims to investigate the compression characteristics of the 3D-printed polylactic acid (PLA) samples at temperatures below the glass transition temperature (Tg) with…

Abstract

Purpose

This study aims to investigate the compression characteristics of the 3D-printed polylactic acid (PLA) samples at temperatures below the glass transition temperature (Tg) with varying strain rates and develop a thermo-mechanical viscoplastic constitutive model to predict the finite strain compression response using a single set of material parameters. Also, the micro-mechanical damage processes are linked to the global stress–strain response at varied strain rates and temperatures through scanning electron microscopy (SEM).

Design/methodology/approach

Tg of PLA was determined using a dynamic mechanical analyzer. Compression experiments were conducted at strain rates of 2 × 10–3/s and 2 × 10–2/s at 25°C, 40°C and 50°C. The failure mechanisms were examined using SEM. A finite strain thermo-mechanical viscoplastic constitutive model was developed to analyze the deformations at the considered strain rates and temperatures.

Findings

Tg of PLA was determined as 55°C. While the yield and post-yield stresses drop with increasing temperature, their trend reverses with an increased strain rate. SEM imaging indicated plasticizing effects at higher temperatures, while filament fragmentation and twisting at higher strain rates were identified as the dominant failure mechanisms. Using a non-linear regression analysis to predict the experimental data, an overall R2 value of 0.98 was achieved between experimental and model prediction, implying the robustness of the model’s calibration.

Originality/value

In this study, a viscoplastic constitutive model was developed that considers the combined effect of temperature and strain rate for FDM-printed PLA experiencing extensive compression. Using appropriate temperature-dependent modulus and flow rate properties, a single set of model parameters predicted the rise in the gap between yield stress and degree of softening as strain rates and temperatures increased.

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 September 2024

Yunhai Liu, Penghui Xu, Xiaohua Zhu, Ligao Liu, Bo Li and Qingquan Li

Two friction models of Fe-Fe and Diamond-like carbon (DLC)-Fe were established by molecular dynamics (MD) method to simulate the friction behavior of traditional fracturing pump…

Abstract

Purpose

Two friction models of Fe-Fe and Diamond-like carbon (DLC)-Fe were established by molecular dynamics (MD) method to simulate the friction behavior of traditional fracturing pump plunger and new DLC plunger from atomic scale. This paper aims to investigate the effects of temperature and load on the friction behavior between sealed nitrile butadiene rubber (NBR) and DLC films.

Design/methodology/approach

In this study, MD method is used to investigate the friction behavior and mechanism of DLC film on plungers and sealing NBR based on Fe-Fe system and DLC-Fe system.

Findings

The results show that the friction coefficient of DLC-Fe system exhibits a downward trend with increasing load and temperature. And even achieve a superlubricity state of 0.005 when the load is 1 GPa. Further research revealed that the low interaction energy between DLC and NBR promoted the proportion of atoms with larger shear strain in NBR matrix and the lower Fe layer in DLC-Fe system to be much lower than that in Fe-Fe system. In addition, the application of DLC film can effectively inhibit the temperature rise of friction interface, but will occur relatively large peak velocity.

Originality/value

In this paper, two MD models were established to simulate the friction behavior between fracturing pump plunger and sealing rubber. Through the analysis of mean square displacement, atomic temperature, velocity and Interaction energy, it can be seen that the application of DLC film has a positive effect on reducing the friction of NBR.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 September 2024

Nandalal Acharjee, Subhas Ganguly, Prasenjit Biswas and Bidyapati Sarangi

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has…

Abstract

Purpose

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has explored black pigmented calcium aluminosilicate glass (BPCG), a specialized material known for its unique properties, which holds promise for transforming the color capabilities of traditional ceramics.

Design/methodology/approach

In this investigation, initially composite ceramic sample (B-1) was prepared by milling process prior to sieve analysis to attain the particle size within 44 microns. Microanalysis and morphology and thermography were studied by energy-dispersive X-ray spectroscopy, scanning electron microscope and thermogravimetric analysis and found Sample-B-1 received attractive properties like firing shrinkage, porosity, bulk density and firing strength along with good pyro-plastic properties at various temperatures like 950°C, 1050°C, 1000°C and 1180°C. Furthermore, BPCG-assisted pigmented ceramic composites were synthesized with B-1 matrix. CIE lab investigation of the attributed composites (C-series) within selective soaking range of 5–20 min was performed, and the investigation found that prominent black hue appeared (L: 24.09, a*: −0.17, b*: −0.49) for C-10 containing appeared phases of Di-Co-Silicide (26%), Ni-Chromite, Stilpnomelane (rich in iron) as obtained by X-ray diffraction studies.

Findings

Ceramic material played a significant role in the realms of art and craft, as well as in technology. The artistic facet reveals concepts or ornamentation, while the craft echoes both traditional and functional appeal. Technology, on the other hand, involves the logical implementation behind the creation.

Originality/value

This C-10 Sample comprised the lower percentage of mullite which attributed that the BPCG homogeneously mixed in the matrix of base (B-1) and appeared as spinal staff. Therefore, BPCG was a potential candidate for ceramic metallization, and this traditional metallization processes often faced some challenges like uniformity and mixing in the ceramic composite domain practices. This study aimed to open up new avenues for artistic decoration and bridging the gap between traditional craftsmanship and modern technology. Furthermore, BPCG’s role in color assessment through shocking techniques added an exciting concept for the ceramic practitioners, designers or ceramic educators.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 July 2024

Anindya Bose, Sarthak Sengupta and Sayori Biswas

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering…

Abstract

Purpose

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering closely to pertinent electrochemical characterizations.

Design/methodology/approach

Sensors are the key elements of the modern electronics era through which all the possible physical quantities can be detected and converted into their equivalent electrical form and processed further. But to make the sensing environment better, various types of innovative architectures are being developed nowadays and among them interdigitated electrodes are quite remarkable in terms of their sensing capability. They are a well-qualified candidate in the field of gas sensing and biosensing, but even their sensitivities are getting saturated due to their physical dimensions. Most of the thin film IDEAs fabricated by conventional optical lithographic techniques do not possess a high surface-to-volume ratio to detect the target specified and that reduces their sensitivity factor. In this context, a classic conductive carbon-based highly sensitive three dimensional (3D) IDEA-enabled biosensing system has been conceived on a transparent and flexible substrate to measure the amount of glucose concentration present in human blood. 3D IDEA possesses a way better capacitive sensing behavior compared to conventional thin film microcapacitive electrodes. To transmit the target biological analyte sample property for the detection purpose to the interdigitated array-based sensing platform, the design of a microfluidic channel is initiated on the same substrate. The complex 3D Inter Digital array structure improves the overall capacitance of the entire sensing platform and the reactive surface area as well. The manufactured integrated device displays a decent value of sensitivity in the order of 5.6 µA mM−1 cm−2.

Findings

Development of a low-cost array-based integrated and highly flexible microfluidic biochip to extract the quantity of glucose present in human blood.

Originality/value

Potential future research opportunities in the realm of integrated miniaturized, low-cost smart biosensing systems may arise from this study.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 6 of 6