Search results

1 – 10 of 15
Open Access
Article
Publication date: 14 December 2023

Huijuan Zhou, Rui Wang, Dongyang Weng, Ruoyu Wang and Yaoqin Qiao

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making…

Abstract

Purpose

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making the train stranded in the interval between stations. This study aims to reduce the impact of interrupt events and improve service levels.

Design/methodology/approach

To address this issue, this paper considers the constraints of train operation safety, capacity and dynamic passenger flow demand. It proposes a method for adjusting small loops during interruption events and constructs a train operation adjustment model with the objective of minimizing the total passenger waiting time. This model enables the rapid development of train operation plans in interruption scenarios, coordinating train scheduling and line resources to minimize passenger travel time and mitigate the impact of interruptions. Regarding the proposed train operation adjustment model, an improved genetic algorithm (GA) is designed to solve it.

Findings

The model and algorithm are applied to a case study of interruption events on Beijing Subway Line 5. The results indicate that after solving the constructed model, the train departure intervals can be maintained between 1.5 min and 3 min. This ensures both the safety of train operations on the line and a good match with passengers’ travel demands, effectively reducing the total passenger waiting time and improving the service level of the urban rail transit system during interruptions. Compared to the GA algorithm, the algorithm proposed in this paper demonstrates faster convergence speed and better computational results.

Originality/value

This study explicitly outlines the adjustment method of using short-turn operation during operational interruptions, with train departure times and station stop times as decision variables. It takes into full consideration safety constraints on train operations, train capacity constraints and dynamic passenger demand. It has constructed a train schedule optimization model with the goal of minimizing the total waiting time for all passengers in the system.

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

502

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 7 May 2024

Atef Gharbi

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional…

Abstract

Purpose

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.

Design/methodology/approach

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Findings

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.

Research limitations/implications

The rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Originality/value

The originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target node. This approach significantly improves efficiency by quickly converging to the best paths and using A* heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments, not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale further increases its versatility by seamlessly applying it to extensive and complex environments, making it a versatile solution for a wide range of practical applications. The rigorous assessment against established algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths, achieving higher success rates in different environments and cementing its importance in complex and challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the efficiency, adaptability and applicability of mobile robot path planning methods.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 7 May 2024

Sheak Salman, Hasin Md. Muhtasim Taqi, S.M. Shafaat Akhter Nur, Usama Awan and Syed Mithun Ali

This study aims to address the critical challenge of implementing lean manufacturing (LM) in emerging economies, where sustainability complexities on the production floor hinder…

Abstract

Purpose

This study aims to address the critical challenge of implementing lean manufacturing (LM) in emerging economies, where sustainability complexities on the production floor hinder production efficiency and the transition towards a circular economy (CE). Addressing a gap in existing research, the paper introduces a path analysis model to systematically identify, prioritize and overcome LM implementation barriers, aiming to enhance performance through strategic removal.

Design/methodology/approach

The authors used a mixed-method approach, combining empirical survey data with literature reviews to pinpoint key LM barriers. Using the grey-based Decision-Making Trial and Evaluation Laboratory (DEMATEL) along with the Network Knowledge (NK) method, they mapped causal relationships and barrier intensities. This formed the basis for developing a path simulation algorithm, integrating heuristic considerations for practical decision-making.

Findings

This analysis reveals that the primary barriers to LM adoption is the negative perception and inadequate understanding of lean tools and CE principles. The study provides a strategic framework for managers, offering new insights into barrier prioritization and overcoming strategies to facilitate successful LM adoption.

Research limitations/implications

This research provides a strategic pathway for overcoming LM implementation barriers, empowering managers in emerging economies to enhance sustainability and competitive advantage through LM and CE integration. It emphasizes the significance of structured barrier management in the manufacturing sector.

Originality/value

This research pioneers a systematic exploration of LM implementation barriers in the CE context, making a significant contribution to the literature. It identifies, evaluates barriers and proposes a practical model for overcoming them, enriching sustainable manufacturing practices in emerging markets.

Details

Journal of Responsible Production and Consumption, vol. 1 no. 1
Type: Research Article
ISSN: 2977-0114

Keywords

Open Access
Article
Publication date: 18 October 2023

Ivan Soukal, Jan Mačí, Gabriela Trnková, Libuse Svobodova, Martina Hedvičáková, Eva Hamplova, Petra Maresova and Frank Lefley

The primary purpose of this paper is to identify the so-called core authors and their publications according to pre-defined criteria and thereby direct the users to the fastest…

Abstract

Purpose

The primary purpose of this paper is to identify the so-called core authors and their publications according to pre-defined criteria and thereby direct the users to the fastest and easiest way to get a picture of the otherwise pervasive field of bankruptcy prediction models. The authors aim to present state-of-the-art bankruptcy prediction models assembled by the field's core authors and critically examine the approaches and methods adopted.

Design/methodology/approach

The authors conducted a literature search in November 2022 through scientific databases Scopus, ScienceDirect and the Web of Science, focussing on a publication period from 2010 to 2022. The database search query was formulated as “Bankruptcy Prediction” and “Model or Tool”. However, the authors intentionally did not specify any model or tool to make the search non-discriminatory. The authors reviewed over 7,300 articles.

Findings

This paper has addressed the research questions: (1) What are the most important publications of the core authors in terms of the target country, size of the sample, sector of the economy and specialization in SME? (2) What are the most used methods for deriving or adjusting models appearing in the articles of the core authors? (3) To what extent do the core authors include accounting-based variables, non-financial or macroeconomic indicators, in their prediction models? Despite the advantages of new-age methods, based on the information in the articles analyzed, it can be deduced that conventional methods will continue to be beneficial, mainly due to the higher degree of ease of use and the transferability of the derived model.

Research limitations/implications

The authors identify several gaps in the literature which this research does not address but could be the focus of future research.

Practical implications

The authors provide practitioners and academics with an extract from a wide range of studies, available in scientific databases, on bankruptcy prediction models or tools, resulting in a large number of records being reviewed. This research will interest shareholders, corporations, and financial institutions interested in models of financial distress prediction or bankruptcy prediction to help identify troubled firms in the early stages of distress.

Social implications

Bankruptcy is a major concern for society in general, especially in today's economic environment. Therefore, being able to predict possible business failure at an early stage will give an organization time to address the issue and maybe avoid bankruptcy.

Originality/value

To the authors' knowledge, this is the first paper to identify the core authors in the bankruptcy prediction model and methods field. The primary value of the study is the current overview and analysis of the theoretical and practical development of knowledge in this field in the form of the construction of new models using classical or new-age methods. Also, the paper adds value by critically examining existing models and their modifications, including a discussion of the benefits of non-accounting variables usage.

Details

Central European Management Journal, vol. 32 no. 1
Type: Research Article
ISSN: 2658-0845

Keywords

Open Access
Article
Publication date: 23 January 2024

Rubens C.N. Oliveira and Zhipeng Zhang

The purpose of this study is to address the extended travel time caused by dwelling time at stations for passengers on traditional rail transit lines. To mitigate this issue, the…

Abstract

Purpose

The purpose of this study is to address the extended travel time caused by dwelling time at stations for passengers on traditional rail transit lines. To mitigate this issue, the authors propose the “Non-stop” design, which involves trains comprised of modular vehicles that can couple and uncouple from each other during operation, thereby eliminating dwelling time at stations..

Design/methodology/approach

The main contributions of this paper are threefold: first, to introduce the concept of non-stop rail transit lines, which, to the best of the authors’ knowledge, has not been researched in the literature; second, to develop a framework for the operation schedule of such a line; and third, the author evaluate the potential of its implementation in terms of total passenger travel time.

Findings

The total travel time was reduced by 6% to 32.91%. The results show that the savings were more significant for long commutes and low train occupancy rates.

Research limitations/implications

The non-stop system can improve existing lines without the need for the construction of additional facilities, but it requires technological advances for rolling stock.

Originality/value

To eliminate dwelling time at stations, the authors present the “Non-stop” design, which is based on trains composed of locomotives that couple and uncouple from each other during operation, which to the best of the authors’ knowledge has not been researched in the literature.

Details

Smart and Resilient Transportation, vol. 6 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 30 April 2024

Evan Shellshear and Kah Wee Oh

This paper investigates the constraints an organisation faces when using recruitment agencies and having to trade-off between the speed of hiring a candidate, the cost of a…

Abstract

Purpose

This paper investigates the constraints an organisation faces when using recruitment agencies and having to trade-off between the speed of hiring a candidate, the cost of a candidate and the match of the candidate against the job requirements across different job seniorities. We analyse how technology can shift the cost and hiring speed in spite of these constraints.

Design/methodology/approach

The research design is exploratory, quantitative and cross-sectional. The study employed a two-factor, unbalanced class Analysis of Variance (ANOVA) including interaction effects to test the difference between the means of the class of interest and a control class.

Findings

Our empirical findings confirm that (1) the technological innovation of a recruitment agency marketplace can liberate organisations from their time, cost and quality hiring constraints, accelerating the time to hire by four times and reducing costs by over 12%, and (2) these results hold across varying role seniority levels.

Originality/value

This study contributes to the existing literature in three ways: (1) it introduces the recruitment triangle from project management into the recruitment literature; (2) it demonstrates how technological innovations such as recruitment agency marketplaces are able to provide a shift in the constraints posed by the recruitment triangle.

Details

European Journal of Management Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2183-4172

Keywords

Open Access
Article
Publication date: 14 March 2024

Chongjun Wu, Yutian Chen, Xinyi Wei, Junhao Xu and Dongliu Li

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is…

Abstract

Purpose

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is mainly focused on analyzing the forming mechanism of equipment and factors affecting the forming quality and accuracy, investigating the influence of forming process parameters on the printing quality and optimization of the printing quality. This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Design/methodology/approach

The µ-SLA process is optimized based on the variable cross-section micro-cone structure printing. Multi-index analysis method was used to analyze the influence of process parameters. The process parameter influencing order is determined and validated with flawless micro array structure.

Findings

After the optimization analysis of the top diameter size, the bottom diameter size and the overall height, the influence order of the printing process parameters on the quality of the micro-cone forming is: exposure time (B), print layer thickness (A) and number of vibrations (C). The optimal scheme is A1B3C1, that is, the layer thickness of 5 µm, the exposure time of 3000 ms and the vibration of 64x. At this time, the cone structure with the bottom diameter of 50 µm and the cone angle of 5° could obtain a better surface structure.

Originality/value

This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 30 April 2024

Armando Di Meglio, Nicola Massarotti and Perumal Nithiarasu

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the…

Abstract

Purpose

In this study, the authors propose a novel digital twinning approach specifically designed for controlling transient thermal systems. The purpose of this study is to harness the combined power of deep learning (DL) and physics-based methods (PBM) to create an active virtual replica of the physical system.

Design/methodology/approach

To achieve this goal, we introduce a deep neural network (DNN) as the digital twin and a Finite Element (FE) model as the physical system. This integrated approach is used to address the challenges of controlling an unsteady heat transfer problem with an integrated feedback loop.

Findings

The results of our study demonstrate the effectiveness of the proposed digital twinning approach in regulating the maximum temperature within the system under varying and unsteady heat flux conditions. The DNN, trained on stationary data, plays a crucial role in determining the heat transfer coefficients necessary to maintain temperatures below a defined threshold value, such as the material’s melting point. The system is successfully controlled in 1D, 2D and 3D case studies. However, careful evaluations should be conducted if such a training approach, based on steady-state data, is applied to completely different transient heat transfer problems.

Originality/value

The present work represents one of the first examples of a comprehensive digital twinning approach to transient thermal systems, driven by data. One of the noteworthy features of this approach is its robustness. Adopting a training based on dimensionless data, the approach can seamlessly accommodate changes in thermal capacity and thermal conductivity without the need for retraining.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 9 February 2024

Armando Calabrese, Antonio D'Uffizi, Nathan Levialdi Ghiron, Luca Berloco, Elaheh Pourabbas and Nathan Proudlove

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Abstract

Purpose

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Design/methodology/approach

The methodology entails the integration of service design (SD) and action research (AR) methodologies, characterized by iterative phases that systematically alternate between action and reflective processes, fostering cycles of change and learning. Within this framework, stakeholders are engaged through semi-structured interviews, while the existing and envisioned processes are delineated and represented using BPMN 2.0. These methodological steps emphasize the development of an autonomous, patient-centric web application alongside the implementation of an adaptable and patient-oriented scheduling system. Also, business processes simulation is employed to measure key performance indicators of processes and test for potential improvements. This method is implemented in the context of the CP addressing transient loss of consciousness (TLOC), within a publicly funded hospital setting.

Findings

The methodology integrating SD and AR enables the detection of pivotal bottlenecks within diagnostic CPs and proposes optimal corrective measures to ensure uninterrupted patient care, all the while advancing the digitalization of diagnostic CP management. This study contributes to theoretical discussions by emphasizing the criticality of process optimization, the transformative potential of digitalization in healthcare and the paramount importance of user-centric design principles, and offers valuable insights into healthcare management implications.

Originality/value

The study’s relevance lies in its ability to enhance healthcare practices without necessitating disruptive and resource-intensive process overhauls. This pragmatic approach aligns with the imperative for healthcare organizations to improve their operations efficiently and cost-effectively, making the study’s findings relevant.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Access

Only Open Access

Year

Last 3 months (15)

Content type

1 – 10 of 15