Search results

1 – 8 of 8
Article
Publication date: 24 June 2024

Shahala Sheikh, Lalsingh Khalsa and Vinod Varghese

The influence of the temperature discrepancy parameter and higher order of the time-derivative is discussed. Classical coupled and generalized hygrothermoelasticity models are…

Abstract

Purpose

The influence of the temperature discrepancy parameter and higher order of the time-derivative is discussed. Classical coupled and generalized hygrothermoelasticity models are recovered by considering the various special cases and illustrated graphically.

Design/methodology/approach

The theory of integral transformations has been used to study a new hygrothermal model that includes higher-order time derivatives with three-phase-lags and memory-dependent derivatives (MDD). This model considers the microscopic structure’s influence on a non-simple hygrothermoelastic infinitely long cylinder. The generalized Fourier and Fick’s law was adopted to derive the linearly coupled partial differential equations with higher-order time-differential with the two-phase lag model, including memory-dependent derivatives for the hygrothermal field. The investigation of microstructural interactions and the subsequent hygrothermal change has been undertaken as a result of the delay time and relaxation time translations.

Findings

These two-phase-lag models are also practically applicable in modeling nanoscale heat and moisture transport problems applied to almost all important devices. This work will enable future investigators to gain insight into non-simple hygrothermoelasticity with different phase delays of higher order in detail.

Originality/value

To the best of my knowledge, and after completing an intensive search of the relevant literature, the author could not learn any published research that presents a general solution for a higher-order time-fractional three-phase-lag hygrothermoelastic infinite circular cylinder with memory memory-dependent derivative.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 September 2024

Tanmoy Seth and Sadek Hossain Mallik

The purpose of this paper is to investigate the thermoelastic interactions in a homogeneous, transversely isotropic infinite medium with a spherical cavity in the context of two…

11

Abstract

Purpose

The purpose of this paper is to investigate the thermoelastic interactions in a homogeneous, transversely isotropic infinite medium with a spherical cavity in the context of two temperature Lord-Shulman (2TLS) generalized theory of thermoelasticity considering Eringen’s nonlocal theory and memory dependent derivative (MDD). Memory-dependent derivative is found to be better than fractional calculus for reflecting the memory effect which leads us to the current investigation.

Design/methodology/approach

The governing field equations of the problem are solved analytically using the eigenvalue approach in the transformed domain of Laplace when the cavity’s boundary is being loaded thermomechanically. Using MATLAB software the numerical solution in real space-time domain is obtained by Stehfest method.

Findings

Numerical results for the different thermophysical quantities are presented in graphs and the effects of delay time parameter, non-local parameter and two temperature parameters are studied thereafter. The outcomes of this study convince that the displacement u, conductive temperature ϕ, thermodynamic temperature θ are concave upward whereas radial stress τrr is concave downward for every choice of delay time parameter ω, two temperature parameter η and non-local parameter “ζ”. As a specific instance of our findings, the conclusions of an equivalent problem involving integer order thermoelasticity theory can be obtained, and the corresponding results of this article can be readily inferred for isotropic materials.

Originality/value

The novelty of this research lies in the adoption of generalized thermoelastic theory with memory dependent derivative and Eringen’s nonlocality for analyzing the thermoelastic interactions in an infinite body with spherical cavity by employing eigenvalue approach. It has applications to many thermo-dynamical systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 July 2024

Anand Kumar Yadav, Hari Shankar Mahato, Sangeeta Kumari and Pawel Jurczak

This study aims to examine the plane wave reflection problem in micropolar orthotropic magneto-thermoelastic half space, considering the influence of impedance as a boundary in a…

Abstract

Purpose

This study aims to examine the plane wave reflection problem in micropolar orthotropic magneto-thermoelastic half space, considering the influence of impedance as a boundary in a nonlocal elasticity.

Design/methodology/approach

This study presents the novel formulation of governing partial differential equations for micropolar orthotropic medium with impact of nonlocal thermo-elasticity under magnetic field.

Findings

This study provides the numerical results validation for a particular numerical data and expression for the amplitude ratios of reflected waves and identifies the existence of four different waves, namely, quasi longitudinal displacement qCLD-wave, quasi thermal wave qCT-wave, quasi transverse displacement qCTD-wave and quasi-transverse micro-rotational qCTM-wave. The study derives the velocity equation giving the speed and phase velocity of these waves. The study also shows that the small-scale size effect gives significant impact on phase velocity.

Research limitations/implications

The graphical analysis examines the variation of speeds and coefficients of attenuation of these waves due to frequency, magnetic field and nonlocal parameters. Also, significant conclusions on the variation of reflection coefficient against nonlocal parameter, frequency, impedance parameter and angle of incidence are provided graphically.

Practical implications

The creation of more effective micropolar orthotropic anisotropic materials which are very useful in the daily life and their applications in earth science are greatly impacted by the findings of this study.

Originality/value

The authors of the submitted document initiated and produced it collectively, with equal contributions from all members.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2024

Ahmed E. Abouelregal, Marin Marin, S.S. Saskar and Abdelaziz Foul

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with…

Abstract

Purpose

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with thermoelasticity. It accounts for the fact that heat transfer and deformation are non-local processes that depend on long-term memory. The sphere is free of external stresses and rotates around one of its radial axes at a constant rate. The coupled system equations are solved using the Laplace transform. The outcomes showed that the viscoelastic deformation and thermal stresses increased with the value of the fractional order coefficients.

Design/methodology/approach

The results obtained are considered good because they indicate that the approach or model under examination shows robust performance and produces accurate or reliable results that are consistent with the corresponding literature.

Findings

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Originality/value

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 June 2024

Kirti Boora, Sunita Deswal and Kapil Kumar Kalkal

The purpose of the current manuscript is to investigate the reflection of plane waves in a rotating, two-dimensional homogeneous, initially stressed, nonlocal orthotropic…

Abstract

Purpose

The purpose of the current manuscript is to investigate the reflection of plane waves in a rotating, two-dimensional homogeneous, initially stressed, nonlocal orthotropic thermoelastic solid half-space based on dual-phase-lag model.

Design/methodology/approach

The reflection phenomenon has been utilized to study the effects of initial stress, rotation and nonlocal parameter on the amplitude ratios. During the reflection phenomenon three coupled waves, namely quasi displacement primary wave (qP), quasi thermal wave (qT) and quasi displacement secondary wave (qSV) have been observed in the medium, propagating with distinct velocities. After imposing the suitable boundary conditions, amplitude and energy ratios of the reflected waves are obtained in explicit form.

Findings

With the support of MATLAB programming, the amplitude ratios and energy ratios are plotted graphically to display the effects of rotation, initial stress and nonlocal parameters. Moreover, the impact of anisotropy and phase lags is also observed on the reflection coefficients of the propagating waves.

Originality/value

In the current work, we have considered rotation and nonlocality parameters in an initially stressed orthotropic thermoelastic half-space, which is lacking in the published literature in this field. The introduction of these parameters in a nonlocal orthotropic thermoelastic medium provides a more realistic model for these studies. The present work is valuable for the analysis of orthotropic thermoelastic problems involving rotation, initial stress and nonlocality parameters.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 May 2024

Mohamed M. Hendy and Magdy A. Ezzat

Whereas, the classical Green-Naghdi Type II (GN-II) model struggles to accurately represent the thermo-mechanical behavior of thermoelectric MHD due to its inability to account…

Abstract

Purpose

Whereas, the classical Green-Naghdi Type II (GN-II) model struggles to accurately represent the thermo-mechanical behavior of thermoelectric MHD due to its inability to account for the memory effect. A new mathematical model of the GN-II theory incorporates a fractional order of heat transport to address this issue.

Design/methodology/approach

The employment of the matrix exponential method, which forms the basis of the state-space approach in contemporary theory, is central to this strategy. The resulting formulation, together with the Laplace transform techniques, is applied to a variety of problems. Solutions to a thermal shock problem and to a problem of a layer media both without heat sources are obtained. Also, a problem with the distribution of heat sources is considered. The numerical technique is used to achieve the Laplace transform inversion.

Findings

According to the numerical results and its graphs, the influences of the fractional order parameters, figure-of-merit factor, thermoelectric power and Peltier coefficient on the behavior of the field quantities are investigated in the new theory.

Originality/value

The new modeling of thermoelectric MHD has advanced significantly as a result of this work, providing a more thorough and precise tool for forecasting the behavior of these materials under a range of thermal and magnetic conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2024

Vipin Gupta, Barak M.S. and Soumik Das

This paper addresses a significant research gap in the study of Rayleigh surface wave propagation within a piezoelectric medium characterized by piezoelectric properties, thermal…

Abstract

Purpose

This paper addresses a significant research gap in the study of Rayleigh surface wave propagation within a piezoelectric medium characterized by piezoelectric properties, thermal effects and voids. Previous research has often overlooked the crucial aspects related to voids. This study aims to provide analytical solutions for Rayleigh waves propagating through a medium consisting of a nonlocal piezo-thermo-elastic material with voids under the Moore–Gibson–Thompson thermo-elasticity theory with memory dependencies.

Design/methodology/approach

The analytical solutions are derived using a wave-mode method, and roots are computed from the characteristic equation using the Durand–Kerner method. These roots are then filtered based on the decay condition of surface waves. The analysis pertains to a medium subjected to stress-free and isothermal boundary conditions.

Findings

Computational simulations are performed to determine the attenuation coefficient and phase velocity of Rayleigh waves. This investigation goes beyond mere calculations and examines particle motion to gain deeper insights into Rayleigh wave propagation. Furthermore, this investigates how kernel function and nonlocal parameters influence these wave phenomena.

Research limitations/implications

The results of this study reveal several unique cases that significantly contribute to the understanding of Rayleigh wave propagation within this intricate material system, particularly in the presence of voids.

Practical implications

This investigation provides valuable insights into the synergistic dynamics among piezoelectric constituents, void structures and Rayleigh wave propagation, enabling advancements in sensor technology, augmented energy harvesting methodologies and pioneering seismic monitoring approaches.

Originality/value

This study formulates a novel governing equation for a nonlocal piezo-thermo-elastic medium with voids, highlighting the significance of Rayleigh waves and investigating the impact of memory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid…

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 8 of 8