Search results

1 – 2 of 2
Article
Publication date: 8 December 2023

Han Sun, Song Tang, Xiaozhi Qi, Zhiyuan Ma and Jianxin Gao

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose…

Abstract

Purpose

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose estimation accuracy and improve the overall system performance in outdoor environments.

Design/methodology/approach

Distinct from traditional approaches, MCFilter emphasizes enhancing point cloud data quality at the pixel level. This framework hinges on two primary elements. First, the D-Tracker, a tracking algorithm, is grounded on multiresolution three-dimensional (3D) descriptors and adeptly maintains a balance between precision and efficiency. Second, the R-Filter introduces a pixel-level attribute named motion-correlation, which effectively identifies and removes dynamic points. Furthermore, designed as a modular component, MCFilter ensures seamless integration into existing LiDAR SLAM systems.

Findings

Based on rigorous testing with public data sets and real-world conditions, the MCFilter reported an increase in average accuracy of 12.39% and reduced processing time by 24.18%. These outcomes emphasize the method’s effectiveness in refining the performance of current LiDAR SLAM systems.

Originality/value

In this study, the authors present a novel 3D descriptor tracker designed for consistent feature point matching across successive frames. The authors also propose an innovative attribute to detect and eliminate noise points. Experimental results demonstrate that integrating this method into existing LiDAR SLAM systems yields state-of-the-art performance.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 April 2024

Amin Mojoodi, Saeed Jalalian and Tafazal Kumail

This research aims to determine the ideal fare for various aircraft itineraries by modeling prices using a neural network method. Dynamic pricing has been studied from the…

Abstract

Purpose

This research aims to determine the ideal fare for various aircraft itineraries by modeling prices using a neural network method. Dynamic pricing has been studied from the airline’s point of view, with a focus on demand forecasting and price differentiation. Early demand forecasting on a specific route can assist an airline in strategically planning flights and determining optimal pricing strategies.

Design/methodology/approach

A feedforward neural network was employed in the current study. Two hidden layers, consisting of 18 and 12 neurons, were incorporated to enhance the network’s capabilities. The activation function employed for these layers was tanh. Additionally, it was considered that the output layer’s functions were linear. The neural network inputs considered in this study were flight path, month of flight, flight date (week/day), flight time, aircraft type (Boeing, Airbus, other), and flight class (economy, business). The neural network output, on the other hand, was the ticket price. The dataset comprises 16,585 records, specifically flight data for Iranian airlines for 2022.

Findings

The findings indicate that the model achieved a high level of accuracy in approximating the actual data. Additionally, it demonstrated the ability to predict the optimal ticket price for various flight routes with minimal error.

Practical implications

Based on the significant alignment observed between the actual data and the tested data utilizing the algorithmic model, airlines can proactively anticipate ticket prices across all routes, optimizing the revenue generated by each flight. The neural network algorithm utilized in this study offers a valuable opportunity for companies to enhance their decision-making processes. By leveraging the algorithm’s features, companies can analyze past data effectively and predict future prices. This enables them to make informed and timely decisions based on reliable information.

Originality/value

The present study represents a pioneering research endeavor that investigates using a neural network algorithm to predict the most suitable pricing for various flight routes. This study aims to provide valuable insights into dynamic pricing for marketing researchers and practitioners.

Details

Journal of Hospitality and Tourism Insights, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9792

Keywords

1 – 2 of 2