Search results

1 – 4 of 4
Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Open Access
Article
Publication date: 15 December 2020

Tarikul Islam and Armina Akter

Fractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to…

Abstract

Purpose

Fractional order nonlinear evolution equations (FNLEEs) pertaining to conformable fractional derivative are considered to be revealed for well-furnished analytic solutions due to their importance in the nature of real world. In this article, the autors suggest a productive technique, called the rational fractional (DξαG/G)-expansion method, to unravel the nonlinear space-time fractional potential Kadomtsev–Petviashvili (PKP) equation, the nonlinear space-time fractional Sharma–Tasso–Olver (STO) equation and the nonlinear space-time fractional Kolmogorov–Petrovskii–Piskunov (KPP) equation. A fractional complex transformation technique is used to convert the considered equations into the fractional order ordinary differential equation. Then the method is employed to make available their solutions. The constructed solutions in terms of trigonometric function, hyperbolic function and rational function are claimed to be fresh and further general in closed form. These solutions might play important roles to depict the complex physical phenomena arise in physics, mathematical physics and engineering.

Design/methodology/approach

The rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is of the form U(ξ)=i=0nai(DξαG/G)i/i=0nbi(DξαG/G)i.

Findings

Achieved fresh and further abundant closed form traveling wave solutions to analyze the inner mechanisms of complex phenomenon in nature world which will bear a significant role in the of research and will be recorded in the literature.

Originality/value

The rational fractional (DξαG/G)-expansion method shows high performance and might be used as a strong tool to unravel any other FNLEEs. This method is newly established and productive.

Content available
Article
Publication date: 18 January 2021

Ji-Huan He

It is extremely difficult to establish a variational principle for plasma. Kalaawy obtained a variational principle by using the semi-inverse method in 2016, and Li and He…

884

Abstract

Purpose

It is extremely difficult to establish a variational principle for plasma. Kalaawy obtained a variational principle by using the semi-inverse method in 2016, and Li and He suggested a modification in 2017. This paper aims to search for a generalized variational formulation with a free parameter.

Design/methodology/approach

The semi-inverse method is used by suitable construction of a trial functional with some free parameters.

Findings

A modification of Li-He’s variational principle with a free parameter is obtained.

Originality/value

This paper suggests a new approach to construction of a trial-functional with some free parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1427

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Only content I have access to

Year

Content type

1 – 4 of 4