Search results

1 – 3 of 3
Open Access
Article
Publication date: 7 May 2024

Atef Gharbi

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional…

Abstract

Purpose

The present paper aims to address challenges associated with path planning and obstacle avoidance in mobile robotics. It introduces a pioneering solution called the Bi-directional Adaptive Enhanced A* (BAEA*) algorithm, which uses a new bidirectional search strategy. This approach facilitates simultaneous exploration from both the starting and target nodes and improves the efficiency and effectiveness of the algorithm in navigation environments. By using the heuristic knowledge A*, the algorithm avoids unproductive blind exploration, helps to obtain more efficient data for identifying optimal solutions. The simulation results demonstrate the superior performance of the BAEA* algorithm in achieving rapid convergence towards an optimal action strategy compared to existing methods.

Design/methodology/approach

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bidirectional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Findings

The paper adopts a careful design focusing on the development and evaluation of the BAEA* for mobile robot path planning, based on the reference [18]. The algorithm has remarkable adaptability to dynamically changing environments and ensures robust navigation in the context of environmental changes. Its scale further enhances its applicability in large and complex environments, which means it has flexibility for various practical applications. The rigorous evaluation of our proposed BAEA* algorithm with the Bi-directional adaptive A* (BAA*) algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm.

Research limitations/implications

The rigorous evaluation of our proposed BAEA* algorithm with the BAA* algorithm [18] in five different environments demonstrates the superiority of the BAEA* algorithm. The BAEA* algorithm consistently outperforms BAA*, demonstrating its ability to plan shorter and more stable paths and achieve higher success rates in all environments.

Originality/value

The originality of this paper lies in the introduction of the bidirectional adaptive enhancing A* algorithm (BAEA*) as a novel solution for path planning for mobile robots. This algorithm is characterized by its unique characteristics that distinguish it from others in this field. First, BAEA* uses a unique bidirectional search strategy, allowing to explore the same path from both the initial node and the target node. This approach significantly improves efficiency by quickly converging to the best paths and using A* heuristic knowledge. In particular, the algorithm shows remarkable capabilities to quickly recognize shorter and more stable paths while ensuring higher success rates, which is an important feature for time-sensitive applications. In addition, BAEA* shows adaptability and robustness in dynamically changing environments, not only avoiding obstacles but also respecting various constraints, ensuring safe path selection. Its scale further increases its versatility by seamlessly applying it to extensive and complex environments, making it a versatile solution for a wide range of practical applications. The rigorous assessment against established algorithms such as BAA* consistently shows the superior performance of BAEA* in planning shorter paths, achieving higher success rates in different environments and cementing its importance in complex and challenging environments. This originality marks BAEA* as a pioneering contribution, increasing the efficiency, adaptability and applicability of mobile robot path planning methods.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 14 March 2024

Lázaro Florido-Benítez

The purpose of this paper is to analyse the metaverse platform in a social context to better understand the future of this tool in tourism cities and how this can help to improve…

Abstract

Purpose

The purpose of this paper is to analyse the metaverse platform in a social context to better understand the future of this tool in tourism cities and how this can help to improve the well-being of residents in both digital and physical scenarios.

Design/methodology/approach

In this paper, the current and probable developments in the metaverse, and its use in tourism cities and companies have been investigated. Moreover, this study develops, collects and examines the main metaverse definitions by expert authors and organizations as a methodology to ensure the transparency and credibility of the metaverse analysis.

Findings

Findings suggest that the fusion of the metaverse and tourism cities must create residents’ services and experiences in the new MetaTourPolis to help interact and connect citizens with the city’s institutions and companies, as well as make tourism cities more attractive, innovative, environmentally friendly and healthier places to live. Metaverse will bring new changes for residents and tourists, in fact, this virtual platform is already changing and improving the residents’ quality of life and people with disabilities in tourism cities. For instance, the metaverse platform has been implemented in Seoul, Santa Monica and Dubai MetaTourPolis to interact with their residents, including people with disabilities, to resolve bureaucratic and administrative problems, avoiding this group and the rest of the residents travelling by bus or car to the city’s institutions. In addition, several metaverse applications based on softbot tutors or metaverse virtual social centres have been developed to improve blind and impaired people, and elderly people’ quality of life, respectively.

Originality/value

A new concept called “MetaTourPolis” has been included to stage the relationship between tourism cities and the metaverse platform, where the fusion of metaverse and the new tourism polis of the 21st century will be at the service of citizens, tourists and companies, to create more sustainable, efficient, quantitative and environmental tourism cities.

Details

International Journal of Tourism Cities, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2056-5607

Keywords

Access

Only Open Access

Year

Content type

Earlycite article (3)
1 – 3 of 3