Search results

1 – 5 of 5
Article
Publication date: 19 May 2022

Sanghoon Lee, Yosheph Yang and Jae Gang Kim

The Fay and Riddell (F–R) formula is an empirical equation for estimating the stagnation-point heat flux on noncatalytic and fully catalytic surfaces, based on an assumption of…

Abstract

Purpose

The Fay and Riddell (F–R) formula is an empirical equation for estimating the stagnation-point heat flux on noncatalytic and fully catalytic surfaces, based on an assumption of equilibrium. Because of its simplicity, the F–R has been used extensively for reentry flight design as well as ground test facility applications. This study aims to investigate the uncertainties of the F-R formula by considering velocity gradient, chemical species at the boundary layer edge, and the thermochemical nonequilibrium (NEQ) behind the shock layer under various hypersonic NEQ flow environments.

Design/methodology/approach

The stagnation-point heat flux calculated with the F–R formula was evaluated by comparison with thermochemical NEQ calculations and existing flight experimental values.

Findings

The comparisons showed that the F–R underestimated the noncatalytic heat flux, because of the chemical composition at the surface. However, for fully catalytic heat flux, the F–R results were similar to values of surface heat flux from thermochemical NEQ calculations, because the F–R formula overestimates the diffusive heat flux. When compared with the surface heat flux results obtained from flight experimental data, the F–R overestimated the fully catalytic heat flux. The error was 50% at most.

Originality/value

The results provided guidelines for the F–R calculations under hypersonic flight conditions and for determining the approximate error range for noncatalytic and fully catalytic surfaces.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 November 2023

Mengxia Du, Qiao Wang, Yan Zhang, Yu Bai, Chunqiu Wei and Chunyan Liu

As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack…

Abstract

Purpose

As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack analysis of flow mechanisms. Owing to computational difficulties, few people use numerical algorithms to combine them for discussion. Hence, this study aims to make a deep inquiry into the laminar flow and heat transfer of compressible Newtonian fluid in hypersonic aircraft with small attack angles.

Design/methodology/approach

In this paper, on the basis of mass, momentum and energy conservation laws, the governing equations of the hypersonic boundary layer are established. Viscosity, specific heat capacity and thermal conductivity are considered nonlinear functions concerning temperature. In virtue of the MacCormack finite difference method, the stationary numerical solutions are solved directly, and the validity of the algorithm is verified.

Findings

The results demonstrate that at Mach number 5, compared to the 0° attack angle, the maximum temperature near-wall at the 3° attack angle increases by about 25%. An enjoyable phenomenon is discovered, where the position corresponding to the maximum wall shear force shifts back as the attack angle and Mach number increase. The relationship between the near-wall maximum temperature versus attack angle and Mach number is fitted through numerical calculation results.

Originality/value

Empirical formulas can be used to estimate heat transfer characteristics at small attack angles, which will guide the design of aircraft thermal protection systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1999

Min G. Lee

This paper describes the numerical solutions of type‐IV shock‐on‐shock interactions in hypersonic thermochemical nonequilibrium air flows around blunt bodies. The Navier‐Stokes…

Abstract

This paper describes the numerical solutions of type‐IV shock‐on‐shock interactions in hypersonic thermochemical nonequilibrium air flows around blunt bodies. The Navier‐Stokes equation solver for a chemically reacting and vibrationally relaxing gas mixture was applied to the present problem, where the concepts of the Advection Upstream Splitting Method (AUSM) and the Lower‐Upper Symmetric Gauss‐Seidel (LU‐SGS) method were basically employed along with the two‐temperature thermochemical model of Park. The aerodynamic heating with or without the shock‐on‐shock interaction to a sphere and circular cylinders are simulated for a hypersonic nonequilibrium flow. The numerical results show that typical type‐IV shock‐on‐shock interaction pattern with a supersonic jet structure is also formed in a high‐enthalpy thermochemical nonequilibrium flow, and that the contribution of convective heat flux in the translational/rotational mode to the total heat flux is dominant. Furthermore, the inherent unsteadiness of nonequilibrium type‐IV shock‐on‐shock interaction flowfield is discussed briefly.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1960

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Technical Reports and Translations of the United States…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Technical Reports and Translations of the United States National Aeronautics and Space Administration and publications of other similar Research Bodies as issued.

Details

Aircraft Engineering and Aerospace Technology, vol. 32 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 August 1936

SEPTEMBER this year will be unique in the history of the librarian in England in that for the first time in nearly sixty years the annual conference of the Library Association has…

Abstract

SEPTEMBER this year will be unique in the history of the librarian in England in that for the first time in nearly sixty years the annual conference of the Library Association has already become a memory only. There are those who profess to believe that the conference should be restored to the autumn months. It may be suggested on the other hand that the attendance at Margate lent no assistance to that point of view; indeed, the Margate conference was one of the most pleasant, one of the most successful, of which we have record. Nevertheless, if it can be proved that any large body of librarians was unable to be present owing to the change of month, it appears to us that the matter should be considered sympathetically. Although no one holds any longer the view that one week's attendance at a conference will teach more than many months' study in hermit‐like seclusion—the words and sentiments are those of James Duff Brown—because to‐day there is much more intimate communication between librarians than there was when that sentiment was expressed, there is enormous value, and the adjective is not an exaggeration, in one large meeting of librarians in body in the year. It is an event to which every young librarian looks forward as the privilege to be his when he reaches a high enough position in the service; attendance is a privilege that no librarian anywhere would forego. And this, in spite of the fact that there is usually a grumble because the day is so full of meetings that there is very little chance of such recreation as a seaside, or indeed any other, place visited, usually provides for the delegates.

Details

New Library World, vol. 39 no. 2
Type: Research Article
ISSN: 0307-4803

1 – 5 of 5