Search results

1 – 10 of 26
Article
Publication date: 16 October 2023

Chenghu Li

This paper aims to study the influences of eccentricity on the fastener load and bearing strength of the eccentric connection in the aircraft structure.

Abstract

Purpose

This paper aims to study the influences of eccentricity on the fastener load and bearing strength of the eccentric connection in the aircraft structure.

Design/methodology/approach

The special experiment is designed for the researches. The fastener loads of the eccentric connection are gained by using the derived formulas and numerical analysis, and the fastener load rules is verified by the experiment. The bearing strength of the eccentric connection is investigated by the experiments under different eccentricities compared with that gained from the experiment.

Findings

The study results are summarized as follows. Magnitude of the fastener load in the eccentric connection is greatly affected by distance from the fastener to the centroid of the fastener cluster and that from the fastener to the concentrated load. With the increase of eccentricity of the homolateral concentrated load, the fastener load increases, and difference of the fastener loads becomes larger, forming the short plate effect of the bucket. It means that fastener with the maximum load (the shortest plate of the bucket) leads to decrease of the bearing strength of the eccentric connection (the capacity of the bucket).

Originality/value

The investigation on the influence of eccentricity on the bearing strength of eccentric connection is firstly presented. The vector expression of the fastener load in eccentric connection is firstly derived. And the influencing mechanism of the fastener load on the bearing strengths of the different eccentric connections is demonstrated. The study results can provide guidance for the structure design of the eccentric connection.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2023

Xianghong Fan, Tao Chen and Yuting He

This paper aims to study the influence of different reinforcement methods on crack monitoring characteristics of eddy current array sensors, and the sensors with two different…

Abstract

Purpose

This paper aims to study the influence of different reinforcement methods on crack monitoring characteristics of eddy current array sensors, and the sensors with two different reinforcement methods, SUS304 reinforcement and permalloy reinforcement, are proposed.

Design/methodology/approach

First, the finite element model of the sensor is established to analyze the influence of the reinforcement plate’s electromagnetic parameters on the crack identification sensitivity. Then, the crack monitoring accuracy test of sensors with two reinforcement methods is carried out. Finally, the fatigue crack monitoring experiments with bolt tightening torques of 45 and 63 N · m are carried out, respectively.

Findings

In this study, it is found that the crack identification sensitivity of the sensor can be improved by increasing the relative permeability of the reinforcement plate. The crack monitoring accuracy of the sensors with two different reinforcement methods is about 1 mm. And the crack identification sensitivity of the sensor reinforced by permalloy reinforcement plate is significantly higher than that of the sensor reinforced by SUS304 reinforcement plate.

Originality/value

The sensor reinforced by reinforcement plate can work normally under the squeezing action of the bolt, and the crack monitoring sensitivity of the sensor can be significantly improved by using the reinforcement plate with high relative permeability.

Article
Publication date: 8 August 2022

Kok Keong Choong, Fatimah De’nan, Seen Hooi Chew and Nor Salwani Hashim

Recently, the utilization of cold-formed steel (CFS) roof truss systems and different types of other combination structural support systems, such as concrete or hot-rolled steel…

Abstract

Purpose

Recently, the utilization of cold-formed steel (CFS) roof truss systems and different types of other combination structural support systems, such as concrete or hot-rolled steel support, becomes more frequently used. This paper aims to identify the load transfer characteristics of three different design details for cold-formed truss to supporting system connections and to propose simplified modelling approach for practices.

Design/methodology/approach

Simplification modelling of connection design could be proposed for practical purpose based on the load transfer characteristics obtained from detailed study using finite element method. A cold-formed roof truss system with connection is modelled using line elements. However, the supporting system is not modelled in this work. Three types of connection involve, which are five pieces of CFS L-angle brackets, one-piece of CFS L-angle brackets and three types of bolts connection are modelled.

Findings

The results of analysis show that the connections located on the loaded side experienced higher reactions than those far from loaded side. From the result, it is also found that the option of “Fixed But” support condition in STAAD.Pro with translational degree of freedom being restrained is the most suitable way to represent the CFS L-angle brackets design for Type 1 connection for use in truss modelled using line elements.

Originality/value

Such increase in usage necessitates an appropriate connection detailing depending on the behaviour of the connection.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 February 2024

Ferhat Ceritbinmez and Ali Günen

This study aims to comparatively analyze the cut parts obtained as a result of cutting the Ni-based Inconel 625 alloy, which is widely used in the aerospace industry, with the…

Abstract

Purpose

This study aims to comparatively analyze the cut parts obtained as a result of cutting the Ni-based Inconel 625 alloy, which is widely used in the aerospace industry, with the wire electro-discharge machining (WEDM) and abrasive water jet machining (AWJM) methods in terms of macro- and microanalyses.

Design/methodology/approach

In this study, calipers, Mitutoyo SJ-210, Nikon SMZ 745 T, scanning electron microscope and energy dispersive X-ray were used to determine kerf, surface roughness and macro- and microanalyses.

Findings

Considering the applications in the turbine industry, it has been determined that the WEDM method is suitable to meet the standards for the machinability of Inconel 625 alloy. In contrast, the AWJM method does not meet the standards. Namely, while the kerf angle was formed because the hole entrance diameters of the holes obtained with AWJM were larger than the hole exit diameters, the equalization of the hole entry and exit dimensions, thanks to the perpendicularity and tension sensitivity of the wire electrode used in the holes drilled with WEDM ensured that the kerf angle was not formed.

Originality/value

It is known that the surface roughness of the parts used in the turbine industry is accepted at Ra = 0.8 µm. In this study, the average roughness value obtained from the successful drilling of Inconel 625 alloy with the WEDM method was 0.799 µm, and the kerf angle was obtained as zero. In the cuts made with the AWJM method, thermal effects such as debris, microcracks and melted materials were not observed; an average surface roughness of 2.293 µm and a kerf of 0.976° were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 June 2023

Cristina-Elisabeta Pelin, Alexandra-Raluca Axenie, Adrian Gaz, George Pelin, Adriana Stefan, Cristian Moisei and Albert Arnau Cubillo

This paper aims to present the procedures necessary to determine the insert allowable for a composite sandwich, considering that the inserts were the most commonly used means to…

Abstract

Purpose

This paper aims to present the procedures necessary to determine the insert allowable for a composite sandwich, considering that the inserts were the most commonly used means to install equipment on the composite structure of Clean Sky 2 (CS2)-RACER compound helicopter.

Design/methodology/approach

The installation of the equipment inside of the airframe shall comply with the certification regulations, especially in relation to the inertial factors. Establishing of the needed number of inserts to fix the equipment is directly linked to the allowable coming from coupon tests. The materials and test procedures to which they were subjected are part of the process qualification used in the development of the CS2-RACER Main Fuselage. The samples were tested in two different static mechanical loadings, consisting of pull-out insert and shear-out insert tests. The mechanical behaviour and failure mechanism of the materials were evaluated using optical and scanning electron microscopy.

Findings

The insert installation on the sandwich structure influences the behaviour and mechanical properties during pull-out and shear-out testing.

Research limitations/implications

The limited data available in standardized documents related to insert testing makes it difficult to compare results with certified baseline values.

Practical implications

To reduce the effort of selecting the optimized insert system, specific parameters are included in analytical pre-sizing, i.e. type of loads, geometry, materials, failure modes, special conditions such as manufacturing and testing.

Originality/value

The results of the study presenting the design, manufacturing and mechanical testing of pull-out and shear-out inserts used in composite materials sandwich-type coupons provide valuable information regarding the insert allowable determination.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 January 2022

Akash Gupta and Manjeet Singh

The purpose of this study is to check the reliability of a multi-pin joint to be a fail-safe joint by considering different geometric and material parameters. The pin joints are…

Abstract

Purpose

The purpose of this study is to check the reliability of a multi-pin joint to be a fail-safe joint by considering different geometric and material parameters. The pin joints are made of uni-directional fiberglass that has been impregnated with epoxy composites incorporating 3% nano-clay.

Design/methodology/approach

This study incorporates the analysis of multi-pin joints experimentally, numerically and statistically using the Weibull approach. During analyses, geometrical parameters edge to diameter (E:D), longitudinal pitch to diameter (F:D), side edge to diameter (S:D) and transverse pitch to diameter (P:D) were analyzed using the Taguchi method with a higher-the-better L16 orthogonal array.

Findings

This study aims to develop multi-pin laminated joints to attain higher reliability, which have been designated as fail-safe joints for the intended application and which have higher joint strength. The study reveals that to achieve 99% reliability or 1% probability of failure using the Weibull approach, 24.4% load decrement from the experimental result recorded for three-pin joint configuration at E:D = 4, F:D = 5, S:D = 4 and P:D = 5. Similarly, for the four-pin configuration at E:D = 4, F:D = 4, S:D = 4 and P:D = 5, 23.07% of load decrement observed from the experimental result implies that the expected load with a 99% reliability offers a safe load.

Originality/value

A reliability analysis on multi-pin joints was not conducted in structural application. Composite materials are used because of high reliability and high strength-to-weight ratio. So, in the present work, reliability of the multi-pin joint is analyzed using Weibull distribution.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 February 2023

Artur Abratanski, Rafał Grzejda and Rafał Perz

The purpose of this paper is to describe the new method for optimizing the topology of the control system frame for a canard missile to create its efficient model. Determining the…

120

Abstract

Purpose

The purpose of this paper is to describe the new method for optimizing the topology of the control system frame for a canard missile to create its efficient model. Determining the minimum volume of the part risked losing some of the mechanical interfaces and functionality required of the frame. The proposed method must cope with these requirements and include a validation loop of the improved solution proposed by the software. The processing of the mathematical model to a printable form must take into account manufacturing technologies limitations and appropriate curvature continuities to avoid stress concentrations.

Design/methodology/approach

Real examples from the aerospace industry are presented and the process of determining a prototype is described. The optimization assumed leaving the largest volume of the domain. Strength analyses were performed on both the assembly fasteners and the robust prototype. Once all boundary conditions were validated, topological optimization was performed in the ANSYS environment. The algorithm of the optimization was presented.

Findings

Obtained fatigues showed the vast potential of topology optimization, efficient method of weight reduction in specific situations. It can be considered as an innovative approach to the manufacturing of products with a structure focused on the best possible correlation of weight and strength, for example of a canard rocket.

Originality/value

The paper introduces precise manufacturing technology of the inner frame for the missile’s control system, which ensures sufficient properties of the material, known as EBM.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 2023

Fatima Barrarat, Karim Rayane, Bachir Helifa, Samir Bensaid and Iben Khaldoun Lefkaier

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their…

Abstract

Purpose

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their ability to detect cracks that are not perpendicular to induced current flows. This study aims to investigate the application of the rotating electromagnetic field method to detect arbitrary orientation defects in conductive nonferrous parts. This method significantly improves the detection of cracks of any orientation.

Design/methodology/approach

A new rotating uniform eddy current (RUEC) probe is presented. Two exciting pairs consisting of similar square-shaped coils are arranged orthogonally at the same lifting point, thus avoiding further adjustment of the excitation system to generate a rotating electromagnetic field, eliminating any need for mechanical rotation and focusing this field with high density. A circular detection coil serving as a receiver is mounted in the middle of the excitation system.

Findings

A simulation model of the rotating electromagnetic field system is performed to determine the rules and characteristics of the electromagnetic signal distribution in the defect area. Referring to the experimental results aimed to detect artificial cracks at arbitrary angles in underwater structures using the rotating alternating current field measurement (RACFM) system in Li et al. (2016), the model proposed in this paper is validated.

Originality/value

CEDRAT FLUX 3D simulation results showed that the proposed probe can detect cracks with any orientation, maintaining the same sensitivity, which demonstrates its effectiveness. Furthermore, the proposed RUEC probe, associated with the exploitation procedure, allows us to provide a full characterization of the crack, namely, its length, depth and orientation in a one-pass scan, by analyzing the magnetic induction signal.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 April 2023

Veysel Erturun and Durmuş Odabaş

The purpose of this study is to investigate the microstructure of fretting wear behavior in 6061-T6 aluminum alloy. The fretting wear of blind riveted lap joints of 6061-T6…

Abstract

Purpose

The purpose of this study is to investigate the microstructure of fretting wear behavior in 6061-T6 aluminum alloy. The fretting wear of blind riveted lap joints of 6061-T6 aluminum alloy plates, which are widely used in aircraft construction, was investigated. Fretting damages were investigated between the contact surface of the plates and between the plate and the rivet contact surface.

Design/methodology/approach

Experiments were carried out using a computer controlled Instron testing machine with 200 kN static and 100 kN dynamic load capacity. Max package computer program was used for the control of the experiments. Fretting scars, width of wear scars, microstructure was investigated by metallographic techniques and scanning electron microscopy.

Findings

It was found that fretting damages were occurred between the plates contacting surface and between the plate and rivet contact surface. As load and cycles increased, fretting scars increased. Fretting wear initially begins with metal-to-metal contact. Then, the formed metallic wear particles are hardened by oxidation. These hard particles spread between surfaces, causing three-body fretting wear. Fretting wear surface width increases with increasing load and number of cycles.

Originality/value

The useful life of many tribological joints is limited by wear or deterioration of the fretting components due to fretting by oscillating relative displacements of the friction surfaces. Such displacements are caused by vibrations, reciprocating motion, periodic bending or twisting of the mating component, etc. Fretting also tangibly reduces the surface layer quality and produces increased surface roughness, micropits, subsurface microphone.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 26