Search results

1 – 10 of 431
Open Access
Article
Publication date: 4 August 2020

Alessandra Lumini, Loris Nanni and Gianluca Maguolo

In this paper, we present a study about an automated system for monitoring underwater ecosystems. The system here proposed is based on the fusion of different deep learning…

2577

Abstract

In this paper, we present a study about an automated system for monitoring underwater ecosystems. The system here proposed is based on the fusion of different deep learning methods. We study how to create an ensemble based of different Convolutional Neural Network (CNN) models, fine-tuned on several datasets with the aim of exploiting their diversity. The aim of our study is to experiment the possibility of fine-tuning CNNs for underwater imagery analysis, the opportunity of using different datasets for pre-training models, the possibility to design an ensemble using the same architecture with small variations in the training procedure.

Our experiments, performed on 5 well-known datasets (3 plankton and 2 coral datasets) show that the combination of such different CNN models in a heterogeneous ensemble grants a substantial performance improvement with respect to other state-of-the-art approaches in all the tested problems. One of the main contributions of this work is a wide experimental evaluation of famous CNN architectures to report the performance of both the single CNN and the ensemble of CNNs in different problems. Moreover, we show how to create an ensemble which improves the performance of the best single model. The MATLAB source code is freely link provided in title page.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Content available
Article
Publication date: 24 May 2024

Jingzhou Zhao

The accurate valuation of second-hand vessels has become a prominent subject of interest among investors, necessitating regular impairment tests. Previous literature has…

Abstract

Purpose

The accurate valuation of second-hand vessels has become a prominent subject of interest among investors, necessitating regular impairment tests. Previous literature has predominantly concentrated on inferring a vessel's price through parameter estimation but has overlooked the prediction accuracy. With the increasing adoption of machine learning for pricing physical assets, this paper aims to quantify potential factors in a non-parametric manner. Furthermore, it seeks to evaluate whether the devised method can serve as an efficient means of valuation.

Design/methodology/approach

This paper proposes a stacking ensemble approach with add-on feedforward neural networks, taking four tree-driven models as base learners. The proposed method is applied to a training dataset collected from public sources. Then, the performance is assessed on the test dataset and compared with a benchmark model, commonly used in previous studies.

Findings

The results on the test dataset indicate that the designed method not only outperforms base learners under statistical metrics but also surpasses the benchmark GAM in terms of accuracy. Notably, 73% of the testing points fall within the less-than-10% error range. The designed method can leverage the predictive power of base learners by incrementally adding a small amount of target value through residuals and harnessing feature engineering capability from neural networks.

Originality/value

This paper marks the pioneering use of the stacking ensemble in vessel pricing within the literature. The impressive performance positions it as an efficient desktop valuation tool for market users.

Details

Maritime Business Review, vol. 9 no. 2
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 21 June 2022

Abhishek Das and Mihir Narayan Mohanty

In time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent…

Abstract

Purpose

In time and accurate detection of cancer can save the life of the person affected. According to the World Health Organization (WHO), breast cancer occupies the most frequent incidence among all the cancers whereas breast cancer takes fifth place in the case of mortality numbers. Out of many image processing techniques, certain works have focused on convolutional neural networks (CNNs) for processing these images. However, deep learning models are to be explored well.

Design/methodology/approach

In this work, multivariate statistics-based kernel principal component analysis (KPCA) is used for essential features. KPCA is simultaneously helpful for denoising the data. These features are processed through a heterogeneous ensemble model that consists of three base models. The base models comprise recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU). The outcomes of these base learners are fed to fuzzy adaptive resonance theory mapping (ARTMAP) model for decision making as the nodes are added to the F_2ˆa layer if the winning criteria are fulfilled that makes the ARTMAP model more robust.

Findings

The proposed model is verified using breast histopathology image dataset publicly available at Kaggle. The model provides 99.36% training accuracy and 98.72% validation accuracy. The proposed model utilizes data processing in all aspects, i.e. image denoising to reduce the data redundancy, training by ensemble learning to provide higher results than that of single models. The final classification by a fuzzy ARTMAP model that controls the number of nodes depending upon the performance makes robust accurate classification.

Research limitations/implications

Research in the field of medical applications is an ongoing method. More advanced algorithms are being developed for better classification. Still, the scope is there to design the models in terms of better performance, practicability and cost efficiency in the future. Also, the ensemble models may be chosen with different combinations and characteristics. Only signal instead of images may be verified for this proposed model. Experimental analysis shows the improved performance of the proposed model. This method needs to be verified using practical models. Also, the practical implementation will be carried out for its real-time performance and cost efficiency.

Originality/value

The proposed model is utilized for denoising and to reduce the data redundancy so that the feature selection is done using KPCA. Training and classification are performed using heterogeneous ensemble model designed using RNN, LSTM and GRU as base classifiers to provide higher results than that of single models. Use of adaptive fuzzy mapping model makes the final classification accurate. The effectiveness of combining these methods to a single model is analyzed in this work.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 13 August 2020

Mariam AlKandari and Imtiaz Ahmad

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate…

12337

Abstract

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate conditions, which fluctuate over time. In this research, we propose a hybrid model that combines machine-learning methods with Theta statistical method for more accurate prediction of future solar power generation from renewable energy plants. The machine learning models include long short-term memory (LSTM), gate recurrent unit (GRU), AutoEncoder LSTM (Auto-LSTM) and a newly proposed Auto-GRU. To enhance the accuracy of the proposed Machine learning and Statistical Hybrid Model (MLSHM), we employ two diversity techniques, i.e. structural diversity and data diversity. To combine the prediction of the ensemble members in the proposed MLSHM, we exploit four combining methods: simple averaging approach, weighted averaging using linear approach and using non-linear approach, and combination through variance using inverse approach. The proposed MLSHM scheme was validated on two real-time series datasets, that sre Shagaya in Kuwait and Cocoa in the USA. The experiments show that the proposed MLSHM, using all the combination methods, achieved higher accuracy compared to the prediction of the traditional individual models. Results demonstrate that a hybrid model combining machine-learning methods with statistical method outperformed a hybrid model that only combines machine-learning models without statistical method.

Details

Applied Computing and Informatics, vol. 20 no. 3/4
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 16 July 2020

Loris Nanni, Stefano Ghidoni and Sheryl Brahnam

This work presents a system based on an ensemble of Convolutional Neural Networks (CNNs) and descriptors for bioimage classification that has been validated on different datasets…

2503

Abstract

This work presents a system based on an ensemble of Convolutional Neural Networks (CNNs) and descriptors for bioimage classification that has been validated on different datasets of color images. The proposed system represents a very simple yet effective way of boosting the performance of trained CNNs by composing multiple CNNs into an ensemble and combining scores by sum rule. Several types of ensembles are considered, with different CNN topologies along with different learning parameter sets. The proposed system not only exhibits strong discriminative power but also generalizes well over multiple datasets thanks to the combination of multiple descriptors based on different feature types, both learned and handcrafted. Separate classifiers are trained for each descriptor, and the entire set of classifiers is combined by sum rule. Results show that the proposed system obtains state-of-the-art performance across four different bioimage and medical datasets. The MATLAB code of the descriptors will be available at https://github.com/LorisNanni.

Details

Applied Computing and Informatics, vol. 17 no. 1
Type: Research Article
ISSN: 2634-1964

Open Access
Article
Publication date: 18 March 2022

Loris Nanni, Alessandra Lumini and Sheryl Brahnam

Automatic anatomical therapeutic chemical (ATC) classification is progressing at a rapid pace because of its potential in drug development. Predicting an unknown compound's…

Abstract

Purpose

Automatic anatomical therapeutic chemical (ATC) classification is progressing at a rapid pace because of its potential in drug development. Predicting an unknown compound's therapeutic and chemical characteristics in terms of how it affects multiple organs and physiological systems makes automatic ATC classification a vital yet challenging multilabel problem. The aim of this paper is to experimentally derive an ensemble of different feature descriptors and classifiers for ATC classification that outperforms the state-of-the-art.

Design/methodology/approach

The proposed method is an ensemble generated by the fusion of neural networks (i.e. a tabular model and long short-term memory networks (LSTM)) and multilabel classifiers based on multiple linear regression (hMuLab). All classifiers are trained on three sets of descriptors. Features extracted from the trained LSTMs are also fed into hMuLab. Evaluations of ensembles are compared on a benchmark data set of 3883 ATC-coded pharmaceuticals taken from KEGG, a publicly available drug databank.

Findings

Experiments demonstrate the power of the authors’ best ensemble, EnsATC, which is shown to outperform the best methods reported in the literature, including the state-of-the-art developed by the fast.ai research group. The MATLAB source code of the authors’ system is freely available to the public at https://github.com/LorisNanni/Neural-networks-for-anatomical-therapeutic-chemical-ATC-classification.

Originality/value

This study demonstrates the power of extracting LSTM features and combining them with ATC descriptors in ensembles for ATC classification.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 2 April 2024

Koraljka Golub, Osma Suominen, Ahmed Taiye Mohammed, Harriet Aagaard and Olof Osterman

In order to estimate the value of semi-automated subject indexing in operative library catalogues, the study aimed to investigate five different automated implementations of an…

Abstract

Purpose

In order to estimate the value of semi-automated subject indexing in operative library catalogues, the study aimed to investigate five different automated implementations of an open source software package on a large set of Swedish union catalogue metadata records, with Dewey Decimal Classification (DDC) as the target classification system. It also aimed to contribute to the body of research on aboutness and related challenges in automated subject indexing and evaluation.

Design/methodology/approach

On a sample of over 230,000 records with close to 12,000 distinct DDC classes, an open source tool Annif, developed by the National Library of Finland, was applied in the following implementations: lexical algorithm, support vector classifier, fastText, Omikuji Bonsai and an ensemble approach combing the former four. A qualitative study involving two senior catalogue librarians and three students of library and information studies was also conducted to investigate the value and inter-rater agreement of automatically assigned classes, on a sample of 60 records.

Findings

The best results were achieved using the ensemble approach that achieved 66.82% accuracy on the three-digit DDC classification task. The qualitative study confirmed earlier studies reporting low inter-rater agreement but also pointed to the potential value of automatically assigned classes as additional access points in information retrieval.

Originality/value

The paper presents an extensive study of automated classification in an operative library catalogue, accompanied by a qualitative study of automated classes. It demonstrates the value of applying semi-automated indexing in operative information retrieval systems.

Open Access
Article
Publication date: 30 August 2021

Kailun Feng, Shiwei Chen, Weizhuo Lu, Shuo Wang, Bin Yang, Chengshuang Sun and Yaowu Wang

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is…

1603

Abstract

Purpose

Simulation-based optimisation (SO) is a popular optimisation approach for building and civil engineering construction planning. However, in the framework of SO, the simulation is continuously invoked during the optimisation trajectory, which increases the computational loads to levels unrealistic for timely construction decisions. Modification on the optimisation settings such as reducing searching ability is a popular method to address this challenge, but the quality measurement of the obtained optimal decisions, also termed as optimisation quality, is also reduced by this setting. Therefore, this study aims to develop an optimisation approach for construction planning that reduces the high computational loads of SO and provides reliable optimisation quality simultaneously.

Design/methodology/approach

This study proposes the optimisation approach by modifying the SO framework through establishing an embedded connection between simulation and optimisation technologies. This approach reduces the computational loads and ensures the optimisation quality associated with the conventional SO approach by accurately learning the knowledge from construction simulations using embedded ensemble learning algorithms, which automatically provides efficient and reliable fitness evaluations for optimisation iterations.

Findings

A large-scale project application shows that the proposed approach was able to reduce computational loads of SO by approximately 90%. Meanwhile, the proposed approach outperformed SO in terms of optimisation quality when the optimisation has limited searching ability.

Originality/value

The core contribution of this research is to provide an innovative method that improves efficiency and ensures effectiveness, simultaneously, of the well-known SO approach in construction applications. The proposed method is an alternative approach to SO that can run on standard computing platforms and support nearly real-time construction on-site decision-making.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 4 May 2021

Loris Nanni and Sheryl Brahnam

Automatic DNA-binding protein (DNA-BP) classification is now an essential proteomic technology. Unfortunately, many systems reported in the literature are tested on only one or…

1413

Abstract

Purpose

Automatic DNA-binding protein (DNA-BP) classification is now an essential proteomic technology. Unfortunately, many systems reported in the literature are tested on only one or two datasets/tasks. The purpose of this study is to create the most optimal and universal system for DNA-BP classification, one that performs competitively across several DNA-BP classification tasks.

Design/methodology/approach

Efficient DNA-BP classifier systems require the discovery of powerful protein representations and feature extraction methods. Experiments were performed that combined and compared descriptors extracted from state-of-the-art matrix/image protein representations. These descriptors were trained on separate support vector machines (SVMs) and evaluated. Convolutional neural networks with different parameter settings were fine-tuned on two matrix representations of proteins. Decisions were fused with the SVMs using the weighted sum rule and evaluated to experimentally derive the most powerful general-purpose DNA-BP classifier system.

Findings

The best ensemble proposed here produced comparable, if not superior, classification results on a broad and fair comparison with the literature across four different datasets representing a variety of DNA-BP classification tasks, thereby demonstrating both the power and generalizability of the proposed system.

Originality/value

Most DNA-BP methods proposed in the literature are only validated on one (rarely two) datasets/tasks. In this work, the authors report the performance of our general-purpose DNA-BP system on four datasets representing different DNA-BP classification tasks. The excellent results of the proposed best classifier system demonstrate the power of the proposed approach. These results can now be used for baseline comparisons by other researchers in the field.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 17 July 2020

Sheryl Brahnam, Loris Nanni, Shannon McMurtrey, Alessandra Lumini, Rick Brattin, Melinda Slack and Tonya Barrier

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex…

2844

Abstract

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 431