Search results

1 – 10 of over 54000
Article
Publication date: 29 January 2024

Wanlin Chen and Joseph Lai

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research…

Abstract

Purpose

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research domain is lacking. This study aims to uncover the study trend, research hotspots, prominent contributors, research gaps and directions in this field.

Design/methodology/approach

With a hybrid review approach adopted, relevant literature was examined in three stages. In Stage 1, literature retrieved from Scopus was screened for their relevance to the study topic. In Stage 2, bibliographic data of the shortlisted literature underwent scientometric analyses by the VOSviewer software. Finally, an in-depth qualitative review was made on the key literature.

Findings

The research hotspots in performance assessment of residential building renovation were found: energy efficiency, sustainability, thermal comfort and life cycle assessment. After the qualitative review, the following research gaps and future directions were unveiled: (1) assessments of retrofits incorporating renewable energy and energy storage systems; (2) evaluation of policy options and financial incentives to overcome financial constraints; (3) establishment of reliable embodied energy and carbon datasets; (4) indoor environment assessment concerning requirements of COVID-19 prevention and involvement of water quality, acoustic insulation and daylighting indicators; and (5) holistic decision-making model concerning residents' intentions and safety, health, well-being and social indicators.

Originality/value

Pioneered in providing the first comprehensive picture of the assessment studies on residential building renovations, this study contributes to offering directions for future studies and insights conducive to making rational decisions for residential building renovations.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 6 July 2012

Jaehyun Park, Junglo Park, Juhyung Kim and Jaejun Kim

The purpose of this study is to identify an objective energy performance assessment method in Korea, and to build a building information modelling (BIM) based system that can…

1477

Abstract

Purpose

The purpose of this study is to identify an objective energy performance assessment method in Korea, and to build a building information modelling (BIM) based system that can assess the energy performance of buildings.

Design/methodology/approach

The energy performance assessment methods currently used in Korea were first identified via a literature review. A system was then implemented to solve the problem of objectivity. The system was implemented through a data‐based building information model, instead of the existing method of documented two‐dimensional (2D) CAD. In addition, Revit Architecture (a BIM tool), MS Access, and Visual Basic (VB) were used to implement the system. To verify the system's efficiency, it was compared to the existing method by applying both to an actual case (a school facility).

Findings

This study found that the issue of subjectivity in the Korean energy performance assessment method may be resolved with a data‐based BIM.

Originality/value

This study presented the BIM‐EPAS to reduce errors and the time needed to conduct an energy performance assessment. In order to follow a realistic approach, the BIM‐EPAS was applied to an actual assessment case, thereby verifying the system's applicability.

Article
Publication date: 6 August 2021

Zahid Hussain Hulio, Jiang Wei and Ghulam Mujtaba Khan

The purpose of this paper is to assess the wind resource and energy potential of the Sanghar site for minimizing the dependence on fossil fuels and improving the environment.

158

Abstract

Purpose

The purpose of this paper is to assess the wind resource and energy potential of the Sanghar site for minimizing the dependence on fossil fuels and improving the environment.

Design/methodology/approach

The Sanghar site wind shear coefficient and turbulence intensity factor are investigated for a period of a year. The two-parameter k and c Weibull distribution function is used to analyze the wind speed of the Sanghar site. The standard deviation, coefficient of variation, wind power density and energy density; and capacity factor was assessed for a period of a year. The economic assessment of energy/kWh is investigated for the selection of appropriate wind turbines.

Findings

The mean wind shear of the Sanghar site was found to be 0.2509. The mean wind speed was found to be 4.766, 5.534 and 6.121 at 20, 40 and 60 m above the ground level. The mean value of the k parameter was observed to be 2.433, 2.777 and 2.862 at 20, 40 and 60 m for a period of a year. The Weibull c m/s parameter was found to be 5.377, 6.245 and 6.906 m/s at 20, 40 and 60 m. The major portion of values of standard deviation was found to be in between 0.1 to 2.00 at 20, 40 and 60 m. The mean wind power density values were observed to be 88.33, 93.5 and 110.16 W/m2 at 20, 40 and 60 m; respectively, for a period of a year. The mean coefficient of variation was found to be 0.1478, 0.1205 and 0.1033 at 20, 40 and 60 m; respectively. The mean energy density was found to be 476.75, 683.08 and 866.33 kWh/m2 at 20, 40 and 60 m; respectively. The mean capacity factor for different wind turbines was ranged between 18 to 24.83 for a period of a year. The economic assessment showed that wind turbine B has the minimum cost (US$) 0.0484/kWh.

Practical implications

The assessment provides the solution to sustainable energy generation which reduces the consumption of fuel and the effect of fluctuating price of fuel in the world market on local consumers.

Social implications

Wind energy may have social implications including environmentally friendly, consistent supply of energy during the peak summer season, less unit per cost, etc.

Originality/value

The Sanghar site is new and assessed for the first time in this research work. The Sanghar site is suitable for installing utility wind turbines for energy generation at the lowest cost.

Open Access
Article
Publication date: 28 June 2024

Ebere Donatus Okonta and Farzad Rahimian

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to…

Abstract

Purpose

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to address the significant emissions from building fabrics which pose a threat to achieving these targets if not properly addressed.

Design/methodology/approach

The study, based on a literature review and ten (10) case studies, explored five investigative approaches for evaluating building fabric: thermal imaging, in situ U-value testing, airtightness testing, energy assessment and condensation risk analysis. Cross-case analysis was used to evaluate both case studies using each approach. These methodologies were pivotal in assessing buildings’ existing condition and energy consumption and contributing to the UK’s net-zero ambitions.

Findings

Findings reveal that incorporating the earlier approaches into the building fabric showed great benefits. Significant temperature regulation issues were identified, energy consumption decreased by 15% after improvements, poor insulation and artistry quality affected the U-values of buildings. Implementing retrofits such as solar panels, air vents, insulation, heat recovery and air-sourced heat pumps significantly improved thermal performance while reducing energy consumption. Pulse technology proved effective in measuring airtightness, even in extremely airtight houses, and high airflow and moisture management were essential in preserving historic building fabric.

Originality/value

The research stresses the need to understand investigative approaches’ strengths, limitations and synergies for cost-effective energy performance strategies. It emphasizes the urgency of eliminating carbon dioxide (CO2) and greenhouse gas emissions to combat global warming and meet the 1.5° C threshold.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Article
Publication date: 19 June 2007

Gene M. Owens

The purpose of this paper is to examine the several methodologies and activities taken to assess the environmental impacts of a $33 million pilot project undertaken through a loan…

3947

Abstract

Purpose

The purpose of this paper is to examine the several methodologies and activities taken to assess the environmental impacts of a $33 million pilot project undertaken through a loan from the Asian Development Bank (ADB) jointly with significant Chinese government investments. The ADB biogas utilization project has supported construction of over 7,500 biogas digesters in more than 140 rural villages. An additional 10,000 biogas digesters are programmed as well as significant investment in biogas production through large‐scale animal agribusinesses. The latter will be supported through investments utilizing the Clean Development Mechanism (CDM).

Design/methodology/approach

The paper provides a longitudinal perspective by: looking at the project's Initial Environmental Examination (IEE) undertaken at appraisal; assessing the ongoing energy and environmental monitoring plan currently under way; and examining the potential for the use of Strategic Environmental Assessment (SEA) as a tool for integrating environmental policy considerations on a regional or provincial level in China.

Findings

Improved technologies for application of renewable energy – in particular successful application and adoption of biogas digesters at the village level – offer the potential to promote sustainable, cost‐effective growth in agriculture with concurrent positive environmental impacts.

Practical implications

Based on the relative success of ongoing efforts to promote the adoption of biomass technologies, a significant expansion of the bioenergy program is under consideration by the Ministry of Agriculture.

Originality/value

The case study suggests that there is potential for use of SEA as a tool for the establishment of regional or provincial environmental priorities by taking account of information on the economic, social and environmental benefits, costs and risks of adopting a national strategy for biomass utilization. SEA is a recent innovation in China and must be adapted to local conditions.

Details

Management of Environmental Quality: An International Journal, vol. 18 no. 4
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 8 December 2020

Zahid Hussain Hulio

The objective of this paper to assess the wind energy potential of the Sujawal site for minimizing the dependence on fossil fuels.

Abstract

Purpose

The objective of this paper to assess the wind energy potential of the Sujawal site for minimizing the dependence on fossil fuels.

Design/methodology/approach

The site-specific wind shear coefficient and the turbulence model were investigated. The two-parameter, k and c, Weibull distribution function was used to analyze the wind speed of the Sujawal site. The standard deviation of the site was also assessed for a period of a year. Also, the coefficient of variation was carried out to determine the difference at each height. The wind power and energy densities were assessed for a period of a year. The economic assessment of energy/kWh was investigated for selection of appropriate wind turbine.

Findings

The mean wind shear of the Sujawal site was found to be 0.274. The mean wind speed was found to be 7.458, 6.911, 6.438 and 5.347 at 80, 60, 40 and 20 m, respectively, above the ground level (AGL). The mean values of k parameter were observed to be 2.302, 2.767, 3.026 and 3.105 at 20, 40, 60 and 80 m, respectively, for a period of a year. The Weibull c m/s parameter values were found to be 8.415, 7.797, 7.265 and 6.084 m/s at 80, 60, 40 and 20 m, respectively. The mean values of standard deviation were found to be 0.765, 0.737, 0.681 and 0.650 at 20, 40, 60, and 80 m, respectively. The mean wind power density (W/m2) was found to be 287.33, 357.16, 405.16 and 659.58 for 20, 40, 60 and 80 m, respectively. The economic assessment showed that wind turbine 7 had the minimum cost/kWh US$ 0.0298.

Originality/value

The Sujawal site is suitable for installing the utility wind turbines for energy generation at the lowest cost; hence, a sustainable solution.

Details

World Journal of Science, Technology and Sustainable Development, vol. 18 no. 1
Type: Research Article
ISSN: 2042-5945

Keywords

Article
Publication date: 8 July 2021

Zahid Hussain Hulio, Gm Yousufzai and Wei Jiang

Pakistan is an energy starving country that needs continuous supply of energy to keep up its economic speed. The aim of this paper is to assess the wind resource and energy

Abstract

Purpose

Pakistan is an energy starving country that needs continuous supply of energy to keep up its economic speed. The aim of this paper is to assess the wind resource and energy potential of Quaidabad site for minimizing the dependence on fuels and improving the environment.

Design/methodology/approach

The Quaidabad site wind shear coefficient and turbulence intensity factor are investigated. The two-parameter k and c Weibull distribution function is used to analyze the wind speed of site. The standard deviation of the site is also assessed for a period of a year. The wind power density and energy density are assessed for a period of a year. The economic assessment of energy/kWh is investigated for selection of appropriate wind turbine.

Findings

The mean wind shear coefficient was observed to be 0.2719, 0.2191 and 0.1698 at 20, 40 and 60 m, respectively, for a period of a year. The mean wind speed is found to be 2.961, 3.563, 3.907 and 4.099 m/s at 20, 40, 60 and 80 m, respectively. The mean values of k parameters were observed to be 1.563, 2.092, 2.434 and 2.576 at 20, 40, 60 and 80 m, respectively, for a period of a year. The mean values of c m/s parameter were found to be 3.341, 4.020, 4.408 and 4.625 m/s at 20, 40, 60 and 80 m, respectively, for a period of a year. The major portion of values of standard deviation was found to be in between 0.1 and 2.00 at 20, 40, 60 and 80 m. The wind power density (W/m2) sum total values were observed to be 351, 597, 792 and 923 W/m2 at 20, 40, 60 and 80 m, respectively, for a period of a year. The mean coefficient of variation was found to be 0.161, 0.130, 0.115 and 0.105 at 20, 40, 60 and 80 m, respectively. The sum total energy density was observed to be 1,157, 2,156, 2,970 and 3,778 kWh/m2 at 20, 40, 60 and 80 m, respectively. The economic assessment is showing that wind turbine E has the minimum cost US$0.049/kWh.

Originality/value

The Quaidabad site is suitable for installing the utility wind turbines for energy generation at the lowest cost.

Article
Publication date: 9 September 2021

Abobakr Al-Sakkaf, Ashutosh Bagchi, Tarek Zayed and Sherif Mahmoud

The purpose of this research is to focus on the evaluation of heritage buildings' sustainability. BIM modeling was necessary for the design of the sustainability assessment model…

Abstract

Purpose

The purpose of this research is to focus on the evaluation of heritage buildings' sustainability. BIM modeling was necessary for the design of the sustainability assessment model for Heritage Buildings (SAHB). Using ArchiCAD®, energy simulations were performed for two case studies (Murabba Palace, Saudi Arabia, and Grey Nuns Building, Canada), and the developed model was validated through sensitivity analysis.

Design/methodology/approach

Heritage buildings (HBs) are unique and must be preserved for future generations. This article focuses on a sustainability assessment model and rating scale for heritage buildings in light of the need for their conservation. Regional variations were considered in the model development to identify critical attributes whose corresponding weights were then determined by fuzzy logic. Data was collected via questionnaires completed by Saudi Arabian and Canadian experts, and Fuzzy TOPSIS was also applied to eliminate the uncertainties present when human opinions are involved.

Findings

Results showed that regional variations were sufficiently addressed through the multi-level weight consideration in the proposed model. Comparing the nine identified factors that affect the sustainability of HBs, energy and indoor environmental quality were of equal weight in both case studies.

Originality/value

This study will be helpful for the design of a globally applicable sustainability assessment model for HBs. It will also enable decision-makers to prepare maintenance plans for HBs.

Details

Smart and Sustainable Built Environment, vol. 12 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 27 June 2023

Olubukola Tokede, Mani Kumar Boggavarapu and Sam Wamuziri

Crucial transition of the Indian residential building sector into a low-emission economy require an in-depth understanding of the potentials for retrofitting the existing building…

Abstract

Purpose

Crucial transition of the Indian residential building sector into a low-emission economy require an in-depth understanding of the potentials for retrofitting the existing building stock. There are, however, limited studies that have recognised the interdependencies and trade-offs in the embodied energy and life cycle impact assessment of retrofit interventions. This research appraises the life cycle assessment and embodied energy output of a residential building in India to assess the environmental implications of selected retrofit scenarios.

Design/methodology/approach

This study utilises a single case study building project in South India to assess the effectiveness and impact of three retrofit scenarios based on life cycle assessment (LCA) and embodied energy (EE) estimates. The LCA was conducted using SimaPro version 9.3 and with background data from Ecoinvent database version 3.81. The EE estimates were calculated using material coefficients from relevant databases in the published literature. Monte Carlo Simulation is then used to allow for uncertainties in the estimates for the scenarios.

Findings

The three key findings that materialized from the study are as follows: (1) the retrofitting of Indian residential buildings could achieve up to 20% reduction in the life cycle energy emissions, (2) the modification of the building envelope and upgrading of the building service systems could suffice in providing optimum operational energy savings, if the electricity from the grid is sourced from renewable plants, and (3) the production of LEDs and other building services systems has the highest environmental impacts across a suite of LCA indicators.

Originality/value

The retrofitting of residential buildings in India will lead to better and improved opportunities to meet the commitments in the Paris Climate Change Agreement and will lead to enhanced savings for building owners.

Details

Built Environment Project and Asset Management, vol. 13 no. 5
Type: Research Article
ISSN: 2044-124X

Keywords

Open Access
Article
Publication date: 22 March 2024

Abdul Rauf, Daniel Efurosibina Attoye and Robert H. Crawford

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received…

Abstract

Purpose

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received little attention. We aimed to address this knowledge gap, particularly in the context of the UAE and investigated the embodied energy associated with the use of concrete and other materials commonly used in residential buildings in the hot desert climate of the UAE.

Design/methodology/approach

Using input–output based hybrid analysis, we quantified the life-cycle embodied energy of a villa in the UAE with over 50 years of building life using the average, minimum, and maximum material service life values. Mathematical calculations were performed using MS Excel, and a detailed bill of quantities with >170 building materials and components of the villa were used for investigation.

Findings

For the base case, the initial embodied energy was 57% (7390.5 GJ), whereas the recurrent embodied energy was 43% (5,690 GJ) of the life-cycle embodied energy based on average material service life values. The proportion of the recurrent embodied energy with minimum material service life values was increased to 68% of the life-cycle embodied energy, while it dropped to 15% with maximum material service life values.

Originality/value

The findings provide new data to guide building construction in the UAE and show that recurrent embodied energy contributes significantly to life-cycle energy demand. Further, the study of material service life variations provides deeper insights into future building material specifications and management considerations for building maintenance.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 54000