Search results

1 – 1 of 1
Article
Publication date: 20 April 2015

Vitalija Masteikaite, Virginija Saceviciene, Elmira Kopbajeva and Maira Nurjasarova

To produce a coated fabric, a base fabric may be completely or partially coated with a polymer layer, which changes the properties of the new system relative to the base fabric…

Abstract

Purpose

To produce a coated fabric, a base fabric may be completely or partially coated with a polymer layer, which changes the properties of the new system relative to the base fabric. The purpose of this paper is to analyze the influence of the thermal transfer material and its shape on the deformability of knitted fabrics during the uniaxial extension and to determine the residual deformation of the thermoplastic transfer element of coated fabrics after unloading.

Design/methodology/approach

Knitted fabrics were partially and entirely coated with heat transfer material. For partial coating, square pieces of three different transfer materials were bonded on the middle of the specimen. They were solid, perforated with either nine circular holes or six rectangular holes. A heat seal press was used to laminate knitted fabrics. The samples were subjected to uniaxial tensile testing. The characteristics such as strain at maximum force, strain at break, and strain at low stress were measured. After stretching and relaxation of the specimens, the residual deformation of the heat transfer element was also investigated.

Findings

The results indicated that coating knitted fabrics with transfer material may decrease their stretchability. The experiments show that the decrease in stretchability and in the degree of residual deformation after stretching and relaxing depend on the knitted structure, the shape of the transfer element, and the degree to which the fabric is coated.

Originality/value

This study examines the influence of heat transfer material which may be not only entirely but also partially joined with knitted fabric layer on the deformability and shape stability of this system.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 1 of 1