Search results

1 – 10 of over 14000
Article
Publication date: 10 August 2021

Zahra Sarbazi and Faramarz Hormozi

This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin…

Abstract

Purpose

This study aims to numerically investigate the thermal-hydrodynamic performance of silicon oxide/water nanofluid laminar flow in the heat sink miniature channel with different fin cross-sections. The effect of the fin cross-section including semi-circular, rectangular and quadrant in two directions of flat and curved, and channel substrate materials of steel, aluminum, copper and titanium were examined. Finally, the analysis of thermal and frictional entropy generation in different channels is performed.

Design/methodology/approach

According to the numerical results, the highest heat transfer coefficients belong to the rectangular, quadrant 2, quadrant 1 and semi-circular fins compared to the channel without fin is 38.65%, 29.94%, 27.45% and 17.1%, respectively. Also, the highest performance evaluation criteria belong to the rectangular and quadrant 2 fins, which have 1.35 and 1.29, respectively. Based on the thermal conductivity of the substrate material, the best material is copper. According to the results of entropy analysis, the reduction of thermal irreversibility of the channel with rectangular, quadrant 1, quadrant 2 and semi-circular compared to non-finned channel is equal to 72%, 57%, 63% and 48%, respectively.

Findings

The rectangular and quadrant 2 fins are the best fins and the copper substrate material is the best material to reduce the entropy generation.

Originality/value

The silicon oxide/water nanofluid flow in the heat sink miniature channel with various fin shapes and the curvature angle against the fluid flow was simulated to increase the heat transfer performance. The whole test section is simulated in three-dimensional. Different channel materials have been investigated to find the best channel substrate material.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 February 2022

Shivam Doshi, Gopal Kashyap and Nishant Tiwari

This study aims to capture the heat transfer and entropy generation characteristics of temperature-dependent nano-encapsulated phase change material (NEPCM) slurry in a hybrid…

Abstract

Purpose

This study aims to capture the heat transfer and entropy generation characteristics of temperature-dependent nano-encapsulated phase change material (NEPCM) slurry in a hybrid wavy microchannel. In addition, the effect of substrate material combined with NEPCM slurry on conjugate heat transfer condition is captured for different microchannel heat sinks.

Design/methodology/approach

A novel “hybrid wavy microchannel” is proposed to enhance the overall heat transfer and reduce the pressure drop by combining wavy and raccoon geometry. NEPCM–water slurry is implied in the hybrid wavy, conventional wavy and raccoon microchannel. A user-defined function (UDF) is used to observe the effect of phase-change of paraffin material in thermophysical properties of NEPCM–water nanofluid. All three (hybrid, wavy, raccoon) microchannels are engraved on a rectangular substrate of 1.8 mm width (ωs) and 30 mm length (L), respectively. For hybrid, wavy and raccoon microchannel, waviness (γ) of 0.067 is selected for the investigation.

Findings

The result shows that NEPCM particle presence reduces the fluid domain temperature. The thermal performance of proposed Heat sink 2 is found better than the Heat sink 1. The effect of the geometrical modification, wall thermal conductivity, different volumetric concentrations of nanoparticles (ϕ ∼ 1 – 5%) and Reynolds number (Re ∼ 100 – 500) on thermodynamic irreversibility is also observed. Additionally, the effect of thermal and frictional entropy generation is reduced with a combination of NEPCM slurry and higher conductive material for all heat sinks.

Practical implications

A combination of NEPCM slurry with laminar flow microchannel cooling system emerged as a better alternative over other cooling techniques for higher power density devices such as microprocessors, electronic radar systems, aerospace applications, semiconductors, power electronics in modern electronic vehicles, high power lasers, etc.

Originality/value

The phase-change process of the NEPCM slurry is tracked under conjugate heat transfer in a hybrid wavy microchannel. Furthermore, the phase-change process of NEPCM slurry is captured with different heat sink materials (SS316, silicon and copper) under conjugate heat transfer situation for different heat sinks and concentrations (ϕ ∼ 1–5) of NEPCM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2022

Abhijit Borah, Sumit Kumar Mehta and Sukumar Pati

The purpose of this paper is to analyze numerically forced convective conjugate heat transfer characteristics for laminar flow through a wavy minichannel.

Abstract

Purpose

The purpose of this paper is to analyze numerically forced convective conjugate heat transfer characteristics for laminar flow through a wavy minichannel.

Design/methodology/approach

The mass and momentum conservation equations for the flow of water in the fluidic domain and the coupled energy conservation equations in both the fluid and solid domain are solved numerically using the finite element method. The exteriors of both the walls are subjected to a uniform heat flux.

Findings

The results reveal that the theoretical model without consideration of the effect of wall thickness always predicts a lower value of average Nusselt number ( Nu¯) as compared to the case of conjugate analysis, although it varies with the thickness as well as material of the wall. For the low amplitude of the wall (α = 0.2), the performance factor (PF) becomes very high for Re in the regime of 5 (⩽) Re (⩽) 15. For any geometrical configurations, conjugate heat transfer analysis predicts higher PF as compared to that of nonconjugate analysis.

Practical implications

The present study finds relevance in several applications, such as solar collectors and heat exchangers used in chemical industries and heating-ventilation and air-conditioning, etc.

Originality/value

To the best of the authors’ knowledge, the analysis of combined influences of the thickness and the material of the wall of the channel together with the geometrical parameters of the channel, namely, amplitude and wavelength on the heat transfer and fluid flow characteristics for flow through wavy minichannel in the laminar regime is reported first time in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 April 2015

Vitalija Masteikaite, Virginija Saceviciene, Elmira Kopbajeva and Maira Nurjasarova

To produce a coated fabric, a base fabric may be completely or partially coated with a polymer layer, which changes the properties of the new system relative to the base fabric…

Abstract

Purpose

To produce a coated fabric, a base fabric may be completely or partially coated with a polymer layer, which changes the properties of the new system relative to the base fabric. The purpose of this paper is to analyze the influence of the thermal transfer material and its shape on the deformability of knitted fabrics during the uniaxial extension and to determine the residual deformation of the thermoplastic transfer element of coated fabrics after unloading.

Design/methodology/approach

Knitted fabrics were partially and entirely coated with heat transfer material. For partial coating, square pieces of three different transfer materials were bonded on the middle of the specimen. They were solid, perforated with either nine circular holes or six rectangular holes. A heat seal press was used to laminate knitted fabrics. The samples were subjected to uniaxial tensile testing. The characteristics such as strain at maximum force, strain at break, and strain at low stress were measured. After stretching and relaxation of the specimens, the residual deformation of the heat transfer element was also investigated.

Findings

The results indicated that coating knitted fabrics with transfer material may decrease their stretchability. The experiments show that the decrease in stretchability and in the degree of residual deformation after stretching and relaxing depend on the knitted structure, the shape of the transfer element, and the degree to which the fabric is coated.

Originality/value

This study examines the influence of heat transfer material which may be not only entirely but also partially joined with knitted fabric layer on the deformability and shape stability of this system.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 November 2021

Jyoti Pandey, Mohd. Zahid Ansari and Afzal Husain

Porous media can provide excellent performance in thermal energy transport applications. This study aims to optimise the square porous slabs (placed in the middle of the channel…

Abstract

Purpose

Porous media can provide excellent performance in thermal energy transport applications. This study aims to optimise the square porous slabs (placed in the middle of the channel) parameters to enhance the cooling performance of the jet-impingement microchannel heat sink.

Design/methodology/approach

Three levels of each design parameters, i.e. porous slab side, porous slab height, type of material, permeability and quadratic drag factor, are studied; and an L27 orthogonal array is adopted to generate the design points in the specified design space. Optimum designs of the porous media slabs are achieved to minimise the maximum-wall temperature, thermal resistance and pressure drop and maximise the average heat transfer coefficient and figure of merit (FOM).

Findings

Results exhibited that the porous media material and permeability are the most, whereas drag factor is the least significant factors with respect to the overall performance of the heat sink. The optimum value of FOM for the proposed hybrid heat sink model belongs to the set of design variables, i.e. 0.4 mm slab side, 0.6 mm slab height, 5 × 10−11 m2 permeability, 0.21 drag factor and copper as substrate material.

Originality/value

This study proposes a novel design and a hybrid approach to investigate and optimise the hydrothermal performance of jet impingements on porous slabs inserted in the microchannels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 24 October 2022

Babak Lotfi and Bengt Ake Sunden

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…

1159

Abstract

Purpose

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.

Design/methodology/approach

A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.

Findings

The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2010

Yuchai Sun, Xiaogang Chen, Zhonghao Cheng and Xunwei Feng

The purpose of this paper is to present the results of a study on heat transfer through a textile assembly consisting of fabric and air layers based on a theoretical model capable…

Abstract

Purpose

The purpose of this paper is to present the results of a study on heat transfer through a textile assembly consisting of fabric and air layers based on a theoretical model capable of dealing with conductive, convective and radioactive heat transfer.

Design/methodology/approach

Quantificational results were given out by the aid of finite element (FE) analysis software MSC MARC Mentat.

Findings

Significant findings through this paper include the change in heat flux against time and the transit temperature distribution at the cross‐section of the fabric assembly. The size of the air gaps has a significant influence on the heat transfer. The balance heat flux drops by 40 per cent when the air gap increases from 2 to 10 mm. The influence of the air gap tends to become smaller as the air gap is further increased. The number of fabric layers in the textile assembly has a noted influence, more so when the ambient temperature is lower. Comparisons between the theoretical and tested results show a good agreement.

Originality/value

This paper has established a new method for clothing comfort study by making use of a general purpose FE method software package.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 October 2008

Kai Yang, Ming‐Li Jiao, Yi‐Song Chen, Jun Li and Wei‐Yuan Zhang

The purpose of this paper is to explore the heat transfer and establish a heat transfer model of an extravehicular liquid cooling garment based on a thermal manikin covered with…

Abstract

Purpose

The purpose of this paper is to explore the heat transfer and establish a heat transfer model of an extravehicular liquid cooling garment based on a thermal manikin covered with soft simulated skin.

Design/methodology/approach

The thermal manikin applied in this study was a copper manikin, typical of which was its soft simulated skin – a newly thermoplastic elastomer material. Based on this novel thermal manikin, the heat transfer analysis of an extravehicular liquid cooling garment was performed. To satisfy the practical engineering application and simplify analysis, the hypotheses were proposed, and then the heat transfer model was established by heat transfer theory, in which the heat exchange equation of the liquid cooling garment with the thermal manikin and with the air layer, and the garment's total heat dissipating capacity were derived.

Findings

The verification experiments performed in a climatic chamber by a thermal manikin wearing a liquid cooling garment at different surface temperatures of the thermal manikin show that the modeling value fits well with the experimental value, and the heat transfer model of the liquid cooling garment has a high accuracy. Meanwhile, the relationship between the heat‐dissipating capacity of the liquid cooling garment and its design parameters – inlet temperature and liquid velocity – is suggested as being based on the heat transfer model.

Originality/value

The paper shows that it is an effective method to control the heat‐dissipating capacity of a liquid cooling garment by changing the inlet temperature to some degree, but not by changing the liquid velocity.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2006

R. Nebbali and K. Bouhadef

To investigate the forced convection heat transfer to hydrodynamically and thermally fully developed laminar steady flow of power‐law non‐Newtonian fluid in a partially porous…

Abstract

Purpose

To investigate the forced convection heat transfer to hydrodynamically and thermally fully developed laminar steady flow of power‐law non‐Newtonian fluid in a partially porous square duct.

Design/methodology/approach

The modified Brinkmann‐Forchheimer extended Darcy model for power‐law fluids is used in the porous layer. The solutions for the velocity and temperature fields are obtained numerically using the finite volume method. Computations are performed over a range of Darcy number, power‐law indices, porous insert thickness and thermal conductivity ratio.

Findings

The average Nusselt number and the Fanning factor, so obtained are found to be in good agreement with the literature. It is highlighted that a heat transfer improvement is obtained when the channel is entirely porous and this enhancement is maximized at low permeability. While depending on the working conditions, heat transfer enhancement can also be obtained by filling partially the duct with the porous insert, even if the conductivity ratio is equal to 1. The results indicate also that the conductivity ratio has a strong impact on the heat transfer enhancement at high permeability, while this impact is significant beyond a critical thickness of the porous layer at low permeability. It is found that both shear‐thinning (n<1) and shear‐thickening (n>1) fluids allow obtaining the highest Nusselt number according to the properties of the porous insert. The presence of the porous insert causes a significant increase in pressure drop. This added pressure drop is found to be more important with shear thickening fluids (n>1).

Research limitations/implications

The results of this paper are valid for square ducts and H1 thermal boundary condition, corresponding to an axially uniform heat flux and peripherally uniform temperature. The inertial effects are neglected in the porous region.

Practical implications

The obtained results can be used in the design of heat exchangers and in the cooling of electronic equipments.

Originality/value

This work investigates some interesting ways to enhance heat transfer in three‐dimensional square ducts by using porous substrates and non‐Newtonian fluids. It is believed that the case studied in this paper has not previously been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2005

M.A. Alghoul, M.Y. Sulaiman, B.Z. Azmi and M.Abd. Wahab

To cover the main contributions and developments in solar thermal collectors through focusing on materials, heat transfer characteristics and manufacturing challenges.

4598

Abstract

Purpose

To cover the main contributions and developments in solar thermal collectors through focusing on materials, heat transfer characteristics and manufacturing challenges.

Design/methodology/approach

A range of published papers and internet research including research work on various solar thermal collectors (flat plate, evacuated tubes, and heat pipe tube) were used. Evaluation of solar collectors performance is critiqued to aid solar technologies make the transition into a specific dominant solar collector. The sources are sorted into sections: finding an academic job, general advice, teaching, research and publishing, tenure and organizations.

Findings

Provides information about types of solar thermal collectors, indicating what can be added by using evacuated tube collectors instead of flat plate collectors and what can be added by using heat pipe collectors instead of evacuated tubes.

Research limitations/implications

Focusing only on three types of solar thermal collectors (flat plate, evacuated tubes, and heat pipe tube).

Practical implications

Useful source of information for consultancy and impartial advice for graduate students planning to do research in solar thermal technologies.

Originality/value

This paper fulfils identified information about materials and heat transfer properties of materials and manufacturing challenges of these three solar thermal collectors.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 14000