Search results

1 – 2 of 2
Article
Publication date: 8 July 2021

Ali Shams Nateri, Elham Hasanlou and Abbas Hajipour

This paper aims to investigate using scanner-based adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANNs) and polynomial regression methods for…

Abstract

Purpose

This paper aims to investigate using scanner-based adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANNs) and polynomial regression methods for prediction of silver nanoparticles (AgNPs) and dye concentrations on AgNP-treated silk fabrics.

Design/methodology/approach

For estimation of the dye and AgNPs concentration using image processing, the silk fabrics were scanned under the condition of 200 pixels per inch. The red green blue (RGB) values of scanned images were obtained after applying the median filter. Then, the relationship between scanner RGB values and dye and AgNPs concentrations were obtained by using artificial intelligence methods such as ANFIS and ANNs.

Findings

The best result was achieved by the ANFIS system for calculation concentration of dye with 0.07% error and concentration of AgNPs with 0.008 (gr/l) error. The obtained results indicate that the performance of the ANFIS system method is better than the other methods.

Originality/value

Using a scanner-based artificial intelligence technique for prediction of nanosilver and dye content on silk fabric.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 October 2018

Ali Shams Nateri, Elham Hasanlou and Abbas Hajipour

Artificial intelligence (AI) methods, such as genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS), are capable of providing superior solutions for the…

Abstract

Purpose

Artificial intelligence (AI) methods, such as genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS), are capable of providing superior solutions for the simulation and the modeling of complex problems. The purpose of this study is to estimate the dye and the silver nanoparticle (AgNP) concentrations of silver nanoparticle-treated silk fabrics by the aforementioned methods.

Design/methodology/approach

In this study, the color and the antimicrobial properties of silver nanoparticle-treated silk fabrics were matched by using the GA technique based on spectrophotometric color matching. The ANFIS method was also used; this method is based on the grid partitioning algorithm across four different methods. The first and second methods are provided for dye concentration prediction, and the third and the fourth methods are given for AgNP concentration prediction.

Findings

The mean of absolute error and root mean square (RMS) of the best dye concentration prediction by the ANFIS method based on the second method are 0.087 and 0.103, respectively. In addition, the mean of the absolute error and the RMS of the best results for AgNP concentration prediction by the ANFIS method by using the third method is 0.002 and 0.003, respectively. The obtained results indicate that the performance of the ANFIS method is better than the GA method.

Originality value

The simultaneous prediction of the color and the antimicrobial properties of silver nanoparticle-treated silk fabrics was performed by using the GA and the ANFIS. The suggested method led to acceptable accuracy for color and antibacterial matching.

Details

Pigment & Resin Technology, vol. 48 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2