Search results

1 – 10 of over 1000
Article
Publication date: 4 December 2023

Amar Hisham Jaaffar, Saraswathy Kasavan, Siti Indati Mustapa and Abul Quasem Al-Amin

The COVID-19 pandemic has caused a dramatic impact on energy supply and demand. It is vital to understand households’ behaviour with regard to energy, particularly during the…

Abstract

Purpose

The COVID-19 pandemic has caused a dramatic impact on energy supply and demand. It is vital to understand households’ behaviour with regard to energy, particularly during the pandemic, to deploy future sustainable energy systems. This study aims to investigate the nexus of Malaysian households’ energy consumption behaviour in relation to various electrical appliances, their energy-saving appliance purchasing behaviour and their current possession of energy-saving appliances during the pandemic, especially during the lockdown period, from the perspective of the energy cultures framework.

Design/methodology/approach

The partial least squares structural equation modelling technique was used to test hypothesised relationships based on the 1,485 pieces of household data collected using an online and physical survey during the lockdown period in Malaysia.

Findings

The energy-saving behaviour cultivated due to the impact of the COVID-19 pandemic led to residential customers’ intentions to purchase energy-saving appliances which subsequently led to their current possession of energy-saving appliances. Indeed, energy-saving behaviours in the kitchen, entertainment, office, home lighting and cooling appliances have more than 77.4% influence on their purchasing behaviour. The consumer’s purchase behaviour for energy-saving appliances has a significant, partially mediating influence on the energy-saving behaviour of various electrical appliances and the consumers’ current possession of energy-saving appliances.

Research limitations/implications

This study could be enhanced by improving the sample using a higher-income group and involving other parts of Malaysia such as the southern region. The findings do extend the energy cultures framework by demonstrating the mediating role of households’ energy-saving appliance purchasing behaviour on the relationship between their energy consumption behaviour in relation to various electrical appliances and their current possession of energy-saving appliances.

Practical implications

The results of this study will help develop future action plans for transitioning to energy-saving appliance practices.

Originality/value

This paper examines the effects of the COVID-19 pandemic on future energy efficiency practices in developing countries from the perspective of the energy cultures framework.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 2 April 2024

Chenyu Zhang, Hongtao Xu and Yaodong Da

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal…

22

Abstract

Purpose

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal protection system for the WTs flanges using an electrical heat-tracing element.

Design/methodology/approach

A three-dimensional model and the Poly-Hexacore mesh structure are used, and the fluid-solid coupling method was validated and then deployed to analyze the heat transfer and convection process. Intra-volumetric heat sources are applied to represent the heat generated by the heating element, and the dynamic boundary conditions are considered. The steady temperature and temperature uniformity of the flange are the assessment criteria for the thermal protection performance of the heating element.

Findings

Enlarging the heating area and increasing the heating power improved the flange's temperature and temperature uniformity. A heating power of 4.9 kW was suitable for engineering applications with the lowest temperature nonuniformity. Compared with continuous heating, the increased temperature nonuniformity was buffered, and the electrical power consumption was reduced by half using pulse heating. Pulse heating time intervals of 1, 3 and 4 h were determined for the spring, autumn and winter, respectively.

Originality/value

The originality of this study is to propose a novel electrical heat-tracing thermal protection system for the WTs flanges. The effect of different arrangements, heating powers and heating strategies was studied, by which the theoretical basis is provided for a stable and long-term utilization of the WT flange.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 29 March 2023

Tianchong Wang and Baimin Suo

With the growing climate problem, it has become a consensus to develop low-carbon technologies to reduce emissions. Electric industry is a major carbon-emitting industry…

Abstract

Purpose

With the growing climate problem, it has become a consensus to develop low-carbon technologies to reduce emissions. Electric industry is a major carbon-emitting industry, accounting for 35% of global carbon emissions. Universities, as an important patent application sector in China, promote their patent application and transformation to enhance Chinese technological innovation capability. This study aims to analyze low-carbon electricity technology transformation in Chinese universities.

Design/methodology/approach

This paper uses IncoPat to collect patent data. The trend of low-carbon electricity technology patent applications in Chinese universities, the status, patent technology distribution, patent transformation status and patent transformation path of valid patent is analyzed.

Findings

Low-carbon electricity technology in Chinese universities has been promoted, and the number of patents has shown rapid growth. Invention patents proportion is increasing, and the transformation has become increasingly active. Low-carbon electricity technology in Chinese universities is mainly concentrated in individual cooperative patent classification (CPC) classification numbers, and innovative technologies will be an important development for electric reduction.

Originality/value

This paper innovatively uses valid patents to study the development of low-carbon electricity technology in Chinese universities, and defines low-carbon technology patents by CPC patent classification system. A new attempt focuses on the development status and direction in low-carbon electricity technology in Chinese universities, and highlights the contribution of valid patents to patent value.

Details

International Journal of Climate Change Strategies and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 13 February 2024

Daniel de Abreu Pereira Uhr, Mikael Jhordan Lacerda Cordeiro and Júlia Gallego Ziero Uhr

This research assesses the economic impact of biomass plant installations on Brazilian municipalities, focusing on (1) labor income, (2) sectoral labor income and (3) income…

Abstract

Purpose

This research assesses the economic impact of biomass plant installations on Brazilian municipalities, focusing on (1) labor income, (2) sectoral labor income and (3) income inequality.

Design/methodology/approach

Municipal data from the Annual Social Information Report, the National Electric Energy Agency and the National Institute of Meteorology spanning 2002 to 2020 are utilized. The Synthetic Difference-in-Differences methodology is employed for empirical analysis, and robustness checks are conducted using the Doubly Robust Difference in Differences and the Double/Debiased Machine Learning methods.

Findings

The findings reveal that biomass plant installations lead to an average annual increase of approximately R$688.00 in formal workers' wages and reduce formal income inequality, with notable benefits observed for workers in the industry and agriculture sectors. The robustness tests support and validate the primary results, highlighting the positive implications of renewable energy integration on economic development in the studied municipalities.

Originality/value

This article represents a groundbreaking contribution to the existing literature as it pioneers the identification of the impact of biomass plant installation on formal employment income and local economic development in Brazil. To the best of our knowledge, this study is the first to uncover such effects. Moreover, the authors comprehensively examine sectoral implications and formal income inequality.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

Article
Publication date: 15 October 2021

Paulthurai Rajesh, Francis H. Shajin and Kumar Cherukupalli

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Abstract

Purpose

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Design/methodology/approach

The hybrid technique is the combination of tunicate swarm algorithm (TSA) and radial basis function neural network.

Findings

TSA gets input parameters from the rectifier outputs such as rectifier direct current (DC) voltage, DC current and time. From the input parameters, it enhances the reduced fault power of rectifier and generates training data set based on the MPPT conditions. The training data set is used in radial basis function. During the execution time, it produces the rectifier reference DC side voltage that is converted to control pulses of inverter switches.

Originality/value

Finally, the proposed method is executed in MATLAB/Simulink site, and the performance is compared with different existing methods like particle swarm optimization algorithm and hill climb searching technique. Then the output illustrates the performance of the proposed method and confirms its capability to solve issues.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 September 2023

Samuel Aires Master Lazaro and Vanessa Fathia Baba

This study highlights the crucial significance of stakeholder participation in the creation of a comprehensive energy and electrical master plan for Mozambique. The purpose of…

Abstract

Purpose

This study highlights the crucial significance of stakeholder participation in the creation of a comprehensive energy and electrical master plan for Mozambique. The purpose of this study is to deliver a practical insights that transcend theoretical concerns by digging into the subtleties of stakeholder relationships and strategic collaborations, paving the path for pragmatic and meaningful solutions that connect with real-life conditions. This debate lays the groundwork for educated decision-making, propelling Mozambique’s energy industry towards a more sustainable and prosperous future.

Design/methodology/approach

The study used a combined approach of stakeholder analysis (SA) and social network analysis (SNA) to enhance our understanding of the stakeholder landscape in Mozambique’s energy sector. This methodological approach offers a unique vantage point to examine the individual stakeholders’ roles and the intricate web of connections, partnerships, collaborations and information-sharing activities. By integrating SA and SNA, this study aims to provide a more comprehensive and dynamic depiction of stakeholder interactions, contributing methodologically to the existing body of literature.

Findings

The findings also highlight the need to develop frameworks that promote private investment and joint endeavours with entities such as Cahora Bassa Dam/Mozambique Transmission Company. A consistent legal framework ensures uniform performance and a robust monitoring system for ongoing projects, improving accountability and progress tracking. Furthermore, the discussion includes enhancing the competence of the regulatory agency regulating the electricity industry. This includes tackling complex concerns with electricity pricing and other regulatory aspects relevant to private investment. A highly empowered regulatory agency is critical to creating an atmosphere conducive to long-term private sector involvement.

Research limitations/implications

While the study emphasises the need to integrate multiple stakeholders, it may not detail specific issues or impediments that may develop during the engagement process. Additional research could look into potential tensions or barriers to effective collaboration. Furthermore, the study emphasises the necessity of addressing environmental impacts; it must thoroughly examine specific environmental concerns such as carbon emissions, deforestation or renewable energy possibilities. Future research could assess the suggested policies’ environmental impact more extensively. Additionally, while the conclusion briefly mentions economic prosperity, a more thorough consideration of the possible economic and social implications of various energy policies could provide a greater understanding of their practicality and potential benefits.

Practical implications

In terms of practical contributions, this study aspires to shed light on how stakeholder interactions can shape energy policy interventions that ensure reliable and affordable energy sources for economic development and societal well-being. By unveiling the complex network of relationships and partnerships, this study seeks to provide actionable insights for policymakers, industry players and other stakeholders involved in Mozambique’s energy sector. By taking this action, this research aims to pave the way for more effective and inclusive energy policies that align with circular economy principles, thus addressing a critical need in scholarly discourse and practical implementation.

Originality/value

The study underscores the critical role of energy stakeholders in shaping energy policies and projects, given their influential positions and impact on decision-making processes. While existing literature acknowledges this influence, a discernible research gap exists in comprehensively understanding how stakeholder interactions and collaborations in the energy sector affect policy interventions within a context such as Mozambique. This study seeks to bridge this gap by delving into the intricacies of stakeholder involvement and its implications for energy policy development in Mozambique.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 13 October 2023

Gabriela Maestri, Claudia Merlini, Leonardo Mejia and Fernanda Steffens

This study aims to develop two piezoelectric textile devices formed from different weft knitted fabric rapports (Jersey and Pique) to be applied in the renewable energy’s (RE…

Abstract

Purpose

This study aims to develop two piezoelectric textile devices formed from different weft knitted fabric rapports (Jersey and Pique) to be applied in the renewable energy’s (RE) area.

Design/methodology/approach

Two different weft knitted rapports were produced with polyester (PES). The device developed has five layers: a central of poly(vinylidene fluoride) (PVDF) nonwoven, involved by two insulating layers of PES knitted fabric; and two conductive external layers, made of polypyrrole-coated PES knitted fabric. The piezoelectric textile devices were joined by sewing the five layers of the device.

Findings

The FTIR technique confirmed the β-phase in the PVDF nonwoven. This study produced and tested two different textiles devices with piezoelectric behavior, confirmed by the correlated pattern of voltage and tensile stress difference curves, showing the potential application in RE’s and sustainable energies field as smart textiles, such as devices incorporated in garments in the areas of high movement (elbow, knee, foot, fingers and hands, among others), and as an energy generator device

Originality/value

Textile materials with piezoelectric properties promise to advance RE’s developments due to their high material flexibility and sensitivity to the electrical response. The knitted fabric technology presents flexibility due to its construction process. Comparative studies analyzing the electrical response between knitted and woven fabrics have already been realized. However, there is a gap in terms of research scientific research regarding the comparison of the piezoelectric effect in a material that presents different knitted fabric rapports.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 October 2023

Bokolo Anthony Jnr

The aim of this study is to propose a governance model and key performance indicators on how policymakers can contribute to a more accessible, inclusive and sustainable mobility…

Abstract

Purpose

The aim of this study is to propose a governance model and key performance indicators on how policymakers can contribute to a more accessible, inclusive and sustainable mobility within and across smart cities to examine sustainable urban mobility grounded on the rational management of public transportation infrastructure.

Design/methodology/approach

This study employed desk research methodology grounded on secondary data from existing documents and previous research to develop a sustainable mobility governance model that explores key factors that influence future urban policy development. The collected secondary data was descriptively analyzed to provide initiatives and elements needed to achieve sustainable mobility services in smart cities.

Findings

Findings from this study provide evidence on how cities can benefit from the application of data from different sources to provide value-added services to promote integrated and sustainable mobility. Additionally, findings from this study discuss the role of smart mobility for sustainable services and the application for data-driven initiatives toward sustainable smart cities to enhance mobility interconnectivity, accessibility and multimodality. Findings from this study identify technical and non-technical factors that impact the sustainable mobility transition.

Practical implications

Practically, this study advocates for the use of smart mobility and data-driven services in smart cities to improve commuters' behavior aimed at long-term behavior change toward sustainable mobility by creating awareness on the society and supporting policymakers for informed decisions. Implications from this study provide information that supports policymakers and municipalities to implement data-driven mobility services.

Social implications

This study provides implications toward behavioral change of individuals to adopt a more sustainable mode of travels, increase citizens’ quality of life, improve economic viability of business involved in providing mobility-related services and support decision-making for municipalities and policymakers during urban planning and design by incorporating the sustainability dimension into their present and future developments.

Originality/value

This paper explores how urban transportation can greatly reduce greenhouse gas emissions and provides implications for cities to improve accessibility and sustainability of public transportation, while simultaneously promoting the adoption of more environmentally friendly means of mobility within and across cities. Besides, this study provides a detailed discussion focusing on the potential opportunities and challenges faced in urban environment in achieving sustainable mobility. The governance model developed in this study can also be utilized by technology startups and transportation companies to assess the factors that they need to put in place or improve for the provision of sustainable mobility services.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 4 December 2023

Arshiya Fathima M.S., Adil Khan and Ansari Sarwar Alam

This study aims to conduct the domain mapping of consumer behaviour research in the context of solar energy. The study can help in understanding the intellectual structure…

Abstract

Purpose

This study aims to conduct the domain mapping of consumer behaviour research in the context of solar energy. The study can help in understanding the intellectual structure, evolution of keywords and key research producers (at the author, institutional and source level) related to the domain of solar energy consumer research.

Design/methodology/approach

This study uses R-studios’ bibliometrix package for analysing the bibliographical data collected from the Scopus database. Analysis has been conducted at the descriptive level (summary, author, institution and source) and analytical level (co-citation analysis, co-occurrence analysis, thematic maps and historiography).

Findings

This study finds out the most relevant authors, institutions and sources using criteria such as production, citations and H-index. Relevant research clusters have been identified using the clustering of authors, co-citations and keywords. Thematic mapping has identified the basic and motor themes. Historical citation analysis shows the direct linkage of previous studies. Overall, this study reports the most relevant bibliometric indicators in the domain of solar energy consumer research.

Practical implications

Identified patterns can help policymakers, business experts, social marketers and energy conservation organisations to study consumer behaviour.

Social implications

Thiis bibliometric study can effectively assess sustainable development goals and suggest improved action plans.

Originality/value

This study examined bibliometric analysis in solar energy products (SEPs), recognised varied domains of research work on consumers’ intention to purchase solar household products and mapped them into six groups. This study provides an overview of 40 years of research on consumer behaviour towards SEPs and discusses its findings to identify the research gap.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 1000