Search results

1 – 10 of 31
Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2024

Geer He and Ivar Padrón-Hernández

Emerging market firms (EMFs) are increasingly expanding their global presence through cross-border mergers and acquisitions (CBMAs). While such deals are distinct from those by…

Abstract

Purpose

Emerging market firms (EMFs) are increasingly expanding their global presence through cross-border mergers and acquisitions (CBMAs). While such deals are distinct from those by advanced market firms, there is a need for a comprehensive understanding of how emerging home markets form this distinctiveness. This study aims to remedy this gap.

Design/methodology/approach

The authors conduct a systematic literature review of 84 empirical papers. Through a broad search string and seven exclusion criteria, the authors carefully select studies on country-level home factors of CBMAs by EMFs.

Findings

After summarizing paper volumes, journals and context factors of home/host countries and industries, the authors highlight different strands of institutional theory as the prevailing perspective and pre-M&A issues as the foremost theme. CBMAs by EMFs are influenced by distinct home-exclusive factors, and the mechanisms linking home-country factors to CBMAs by EMFs show significant inconsistencies across studies.

Originality/value

This review focuses on home country influence and thus goes beyond general characteristics of CBMAs by EMFs. The authors highlight more diverse types of home country factors and CBMA outcomes and, more importantly, take a closer look at involved mechanisms. Doing so, the authors identify gaps and disparities that have limited the understanding of home country influence in CBMAs by EMFs. To correct this, the authors offer a comprehensive roadmap for future research, contributing to EMF studies in particular and CBMA and international business research in general.

Details

Multinational Business Review, vol. 32 no. 2
Type: Research Article
ISSN: 1525-383X

Keywords

Article
Publication date: 11 July 2024

Shuai Deng, Xin Cheng, Huachun Wu and Yefa Hu

The multi-objective optimization configuration strategy is proposed due to the configuration of EMAs in fault-tolerant control of active magnetic bearing with redundant…

Abstract

Purpose

The multi-objective optimization configuration strategy is proposed due to the configuration of EMAs in fault-tolerant control of active magnetic bearing with redundant electromagnetic actuators involving high-dimensional, nonlinear, conflicting goals.

Design/methodology/approach

A multi-objective optimization model for bias current coefficients is established based on the nonlinear model of active magnetic bearings with redundant electromagnetic actuators. Based on the non-dominated sorting genetic algorithm III, a numerical method is used to obtain feasible and non-inferior sets for the bias current coefficient.

Findings

(1) The conflicting relationship among the three optimization objectives was analyzed for various failure modes of EAMs. (2) For different EMAs' failure modes, the multi-objective optimization configuration strategy can simultaneously achieve the optimal or sub-optimal effective EMF, flux margins, and stability of EMF. Moreover, the characteristics of the optimal Pareto front are consistent with the physical properties of the AMB. (3) Compared with the feasible configuration of C0, the non-inferior configurations can significantly improve the performance of AMB, and the advantages of the multi-objective optimization configuration strategy become more prominent as the asymmetry of the residual supporting structure intensifies.

Originality/value

i) Considering the variation of the rotor displacement during the support reconstruction, a decision-making model that can accurately characterize the dynamic performance of AMB is presented. (ii) The interaction law between AMB and rotor under different failure modes of EMAs is analyzed, and the configuration principles for redundant EMAs are proposed. (iii) Based on the dynamic characteristics of AMB during the support reconstruction, effective EMF, energy consumption, and the Pearson correlation coefficient between the desired EMFs and the decoupled control currents are used as objective functions. iv. The NSGA-III is combined with the decision-making model to address the multi-objective optimization configuration problem of C0.

Article
Publication date: 9 August 2024

Chengxiang Chu, Sihan Cheng and Cong Cao

There is currently a gap in the research regarding the effect of corporate culture on corporate innovation capability. Based on cultural hierarchy theory, in this paper, we…

Abstract

Purpose

There is currently a gap in the research regarding the effect of corporate culture on corporate innovation capability. Based on cultural hierarchy theory, in this paper, we explore the interactions between cultural factors and innovation capability in emerging market firms (EMFs). We discuss the mechanisms by which incentive, institutional, and vibrant corporate cultures influence corporate innovation capability. Furthermore, we consider the transformation of artificial general intelligence (AGI) from a tool into a colleague and how this affects the relationship between corporate culture and innovation capability.

Design/methodology/approach

An online questionnaire was distributed to corporate employees to explore their attitudes towards AGI and corporate culture. In total, 523 valid questionnaires were empirically analysed using partial least squares structural equation modelling and multigroup analysis (MGA).

Findings

The results showed that incentive culture, institutional culture, and vibrant culture had a positive impact on corporate innovation capability. MGA revealed significant differences between employees who considered AGI a tool and those who considered it a colleague. Employees who treated AGI as a colleague were likely to be influenced by a vibrant culture, whereas employees who treated AGI as a tool were likely to be influenced by an incentive or institutional culture.

Originality/value

Building on cultural hierarchy theory, our study provides a new theoretical framework to enrich current research on the relationship between corporate culture and AGI. The study can help EMF managers adjust incentive and institutional cultures before AGI shifts from being a tool to a colleague and negatively impacts innovation capacity.

Details

Cross Cultural & Strategic Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2059-5794

Keywords

Article
Publication date: 27 August 2024

Xiaobao Chai, Jinglin Liu, RuiZhi Guan and Minglang Xiao

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid…

Abstract

Purpose

To improve the output torque density of the machine and to be better suited for automation applications, this paper aims to propose a double-permanent-magnet enhanced hybrid stepping machine (DPMEHSM) with tangential and radial magnetization.

Design/methodology/approach

First, the structure of DPMEHSM is introduced and its operation principle is analyzed by describing the variation in stator poles versus time. Second, based on the similar electrical load and amount of PM, the size equations of the DPMEHSM are designed and the main parameters are presented. Third, the electromagnetic performances including the PM flux linkage distribution, magnetic density distribution, air-gap field, back electromotive force (back-EMF), detent torque, holding torque and output torque of DPMEHSM and stator-PM hybrid stepping machine (SPMHSM) are analyzed based on the finite element method.

Findings

The results show that the DPMEHSM has superiority in back-EMF, holding torque and output torque.

Originality/value

This paper proposes a DPMEHSM with tangential and radial magnetization to improve the output torque density.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 July 2024

Basharat Ullah and Faisal Khan

This paper aims to present an overview of permanent magnet linear flux-switching machines (PMLFSM), field excited LFSM and hybrid excited LFSM (HELFSM) topologies as presented in…

Abstract

Purpose

This paper aims to present an overview of permanent magnet linear flux-switching machines (PMLFSM), field excited LFSM and hybrid excited LFSM (HELFSM) topologies as presented in literature for transportation systems such as high-speed trains and maglev systems.

Design/methodology/approach

The structural designs of different configurations are thoroughly investigated, and their respective advantages and disadvantages are examined. Based on the geometry and excitation sources, a detailed survey is carried out. Specific design and space issues, such as solid and modular structures, structure strength, excitation sources placement, utilization of PM materials, and flux leakage are investigated.

Findings

PMLFSM provide higher power density and efficiency than induction and DC machines because of the superior excitation capability of PMs. The cost of rare-earth PMs has risen sharply in the past few decades because of their frequent use, so the manufacturing cost of PMLFSM is increasing. Owing to the influence of high-energy PMs and magnetic flux concentration, the efficiency and power density are higher in such machines. PM is the only excitation source in PMLFSM and has constant remanence, limiting its applications in a wide speed operation range. Therefore, the field winding is added in the PMLFSM to flexibly regulate the magnetic field, making it a hybrid excited one. The HELFSM possess better flux linkage, high thrust force density and better flux controlling ability, leading to a wide speed range. However, the HELFSM have problems with the crowded mover, as PM, field excited and armature excitation are housed on a short mover. So, for better performance, the area of each excitation component has to compete with each other.

Originality/value

Transportation of goods and people by vehicles is becoming increasingly prevalent. As railways play a significant role in the transportation system and are an integral part of intercity transportation. So, this paper presents an overview of various linear machines that are presented in literature for rail transit systems to promote sustainable urban planning practices.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 July 2024

Emrah Cetin and Z.Q. Zhu

This study aims to obtain the minimum torque ripple at the maximum average torque for Flux-switching permanent magnet (FSPM) machines.

61

Abstract

Purpose

This study aims to obtain the minimum torque ripple at the maximum average torque for Flux-switching permanent magnet (FSPM) machines.

Design/methodology/approach

This paper is about torque performance optimization of the FSPM machines. To achieve that, finite element analysis and genetic algorithm (GA) are used. Five different designs are simulated, optimized and compared on their air gap flux density, back electromotive force, cogging torque, average torque, torque density and torque ripple.

Findings

After the thousands of iterations, its proved that all proposed shaping techniques have potential for reducing torque ripple and cogging torque, with slightly reduced average torque. The best design is the joint stator and rotor shaping, Design V, which results in the lowest torque ripple and cogging torque. The techniques should be applicable to FSPMs with other stator slot/rotor pole number combinations.

Originality/value

In this paper, rotor pole shaping by notching, chamfering and generic shaping, stator tooth shaping and joint shaping techniques are investigated for 12 s/10p FSPM machines. Rotor and stator flanks are optimized separately and jointly, by using finite element analysis and GA for optimization to achieve maximum average torque and minimum torque ripple. Five different design is implemented and compared, respectively.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 July 2024

Salman Ali, Neelam Qadeer, Luca Ciprini and Fabrizio Marignetti

The purpose of this study is to reduce the cogging torque in axial flux permanent magnet (AFPM) machine using optimal magnet shape.

Abstract

Purpose

The purpose of this study is to reduce the cogging torque in axial flux permanent magnet (AFPM) machine using optimal magnet shape.

Design/methodology/approach

This study analyzes different magnet shapes for AFPM machine performance enhancement. Three-dimensional (3D) finite element analysis is performed to see the effects of pole shaping on the cogging torque of the AFPM machine.

Findings

The magnetic pole shape has a significant effect on cogging torque and overall efficiency. The conventional model has the highest torque whereas the conventional skewing affected cogging torque positively and significantly reduced the cogging torque. The combination of skewing the pole along with face curving is more effective and decreases the cogging torque from 3.88 Nm to 1.5 Nm.

Originality/value

Rare-earth magnets are the most expensive and important part of AFPM machines. Shape and volume optimization of rare-earth magnets is crucial for the performance of AFPM machines. The research aims to analyze the different permanent magnet designs for performance improvement of the AFPM machine. Conventional flat top trapezoidal, curved-top and skewed-magnet shapes are analyzed and the performance of the AFPM machine is compared with different magnet shapes. Curved-top shape and skewed magnet significantly reduce the cogging torque. Furthermore, a combination of curved-top shape and skew magnet shape is proposed to reduce the cogging torque further and improve the AFPM machine’s overall performance. Newly proposed magnet profile gives skewed curve magnet shapes which reduce the cogging torque further. 3D finite element analysis has been used to analyze the single-sided AFPM with all four different magnet shapes. The research focuses on single-sided AFPM machines, but the results are also valid for double-sided AFPM machines and can be extended to other topologies of AFPM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 November 2022

Sakshi Kukreja, Girish C. Maheshwari and Archana Singh

The study aims to evaluate and compare the mergers and acquisitions (M&As) performance utilising a sample of deals originating from Brazil, Russia, India, China and South Africa…

Abstract

Purpose

The study aims to evaluate and compare the mergers and acquisitions (M&As) performance utilising a sample of deals originating from Brazil, Russia, India, China and South Africa (BRICS). In addition to nation-wise performance analysis, a further sub-sample analysis is conducted based on the target location (domestic and cross-border), development status (developed and emerging) and the acquired ownership stakes (majority and minority).

Design/methodology/approach

The final sample of the study includes 7,105 deals announced between 2000 and 2019. M&A performance is proxied by the abnormal returns earned over the select event windows. Multiple parametric and non-parametric tests are employed for testing the robustness.

Findings

The results indicate significant performance differences across BRICS markets, with the highest and lowest abnormal returns reported for Chinese and Russian acquirers, respectively. The disaggregated analysis also affirms the performance differences for the select sub-samples.

Research limitations/implications

The study highlights the need for acknowledging and expounding the differences in M&As across emerging markets. Further, the results of the study provide a possible explanation of the disagreement over the M&A performance results reported in the previous literature.

Practical implications

Acknowledging and understanding the potential performance differences based on location, ownership strategies and development status can aid executives in sharpening decision-making and also help general investors.

Originality/value

The study contributes by examining a comprehensive sample of deals across five major emerging economies, as against the majority of previous studies which have their results based on either single nation samples or have utilised only a sub-sample of domestic or foreign acquisitions.

Details

International Journal of Emerging Markets, vol. 19 no. 8
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 1 July 2024

Ruipan Lu, Zhangqi Liu, Xiping Liu, Baoyu Sun and Jiangwei Liang

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims…

Abstract

Purpose

To address the issues of the insufficient output torque associated with the application of intensifying-flux permanent magnet (PM) machines in electric vehicles, this paper aims to propose an intensifying-flux hybrid excitation PM machine. It is possible to adjust the air gap magnetic field by adjusting the field current in the excitation winding, thereby increasing the torque output capability and speed range of the machine.

Design/methodology/approach

First, a novel intensifying-flux hybrid excited permanent magnet synchronous machine (IF-HEPMSM) is proposed on the basis of intensifying-flux permanent magnet synchronous machine (IF-PMSM) and an equivalent magnetic circuit model is established. Second, the tooth width and yoke thickness of the machine stator are optimized to ensure the overload capacity of the machine while effectively improving the wide flux regulation range. Furthermore, the electromagnetic characteristics of the IF-HEPMSM are investigated and compared with the IF-PMSM and conventional permanent magnet synchronous machine (PMSM) by using finite element simulations.

Findings

The id of IF-HEPMSM and IF-PMSM is greater than zero low-speed magnetizing current. And the flux-weakening current of the IF-HEPMSM is 18% and 3% smaller than of the conventional PMSM and IF-PMSM.

Practical implications

Aiming at the problems of IF-PMSM applied to electric vehicles, this paper proposes an IF-HEPMSM. The air gap magnetic field is adjusted by controlling the current of the excitation winding to improve the reliability of the machine. Therefore, the IF-HEPMSM combines the advantages of high-power density and high efficiency of the PMSM and the controllable magnetic field of the electro-excitation machine, which is of great engineering value when applied in the field of electric vehicles.

Originality/value

The proposed IF-HEPMSM offers better flux regulation capability with electromagnetic characteristics analysis and maps of dq-axis current as compared to IF-PMSM and conventional PMSM. Moreover, the improvement of the torque can make up for the shortcomings of the insufficient torque output capability of the IF-PMSM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 31