Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 7 May 2019

Yanan Wang, Jianqiang Li, Sun Hongbo, Yuan Li, Faheem Akhtar and Azhar Imran

Simulation is a well-known technique for using computers to imitate or simulate the operations of various kinds of real-world facilities or processes. The facility or process of…

1737

Abstract

Purpose

Simulation is a well-known technique for using computers to imitate or simulate the operations of various kinds of real-world facilities or processes. The facility or process of interest is usually called a system, and to study it scientifically, we often have to make a set of assumptions about how it works. These assumptions, which usually take the form of mathematical or logical relationships, constitute a model that is used to gain some understanding of how the corresponding system behaves, and the quality of these understandings essentially depends on the credibility of given assumptions or models, known as VV&A (verification, validation and accreditation). The main purpose of this paper is to present an in-depth theoretical review and analysis for the application of VV&A in large-scale simulations.

Design/methodology/approach

After summarizing the VV&A of related research studies, the standards, frameworks, techniques, methods and tools have been discussed according to the characteristics of large-scale simulations (such as crowd network simulations).

Findings

The contributions of this paper will be useful for both academics and practitioners for formulating VV&A in large-scale simulations (such as crowd network simulations).

Originality/value

This paper will help researchers to provide support of a recommendation for formulating VV&A in large-scale simulations (such as crowd network simulations).

Details

International Journal of Crowd Science, vol. 3 no. 1
Type: Research Article
ISSN: 2398-7294

Keywords

Open Access
Article
Publication date: 18 November 2021

Fauziah Eddyono, Dudung Darusman, Ujang Sumarwan and Fauziah Sunarminto

This study aims to find a dynamic model in an effort to optimize tourism performance in ecotourism destinations. The model structure is built based on competitive performance in…

6074

Abstract

Purpose

This study aims to find a dynamic model in an effort to optimize tourism performance in ecotourism destinations. The model structure is built based on competitive performance in geographic areas and the application of ecotourism elements that are integrated with big data innovation through artificial intelligence technology.

Design/methodology/approach

Data analysis is performed through dynamic system modeling. Simulations are carried out in three models: First, existing simulation models. Second, Scenario 1 is carried out by utilizing a causal loop through innovation of big data-based artificial intelligence technology to ecotourism elements. Third, Scenario 2 is carried out by utilizing a causal loop through big data-based artificial intelligence technology on aspects of ecotourism elements and destination competitiveness.

Findings

This study provides empirical insight into the competitiveness performance of destinations and the performance of implementing ecotourism elements if integrated with big data innovations that will be able to massively demonstrate the growth of sustainable tourism performance.

Research limitations/implications

This study does not use a primary database, but uses secondary data from official sources that can be accessed by the public.

Practical implications

The paper includes implications for the development of intelligent technology based on big data and also requires policy innovation.

Social implications

Sustainable tourism development.

Originality/value

This study finds the expansion of new theory competitiveness of ecotourism destinations.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

Open Access
Article
Publication date: 7 February 2022

Chunsuk Park, Dong-Soon Kim and Kaun Y. Lee

This study attempts to conduct a comparative analysis between dynamic and static asset allocation to achieve the long-term target return on asset liability management (ALM). This…

1450

Abstract

This study attempts to conduct a comparative analysis between dynamic and static asset allocation to achieve the long-term target return on asset liability management (ALM). This study conducts asset allocation using the ex ante expected rate of return through the outlook of future economic indicators because past economic indicators or realized rate of returns which are used as input data for expected rate of returns in the “building block” method, most adopted by domestic pension funds, does not fully reflect the future economic situation. Vector autoregression is used to estimate and forecast long-term interest rates. Furthermore, it is applied to gross domestic product and consumer price index estimation because it is widely used in financial time series data. Based on asset allocation simulations, this study derived the following insights: first, economic indicator filtering and upper-lower bound computation is needed to reduce the expected return volatility. Second, to reach the ALM goal, more stocks should be allocated than low-yielding assets. Finally, dynamic asset allocation which has been mirroring economic changes actively has a higher annual yield and risk-adjusted return than static asset allocation.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. 30 no. 1
Type: Research Article
ISSN: 1229-988X

Keywords

Open Access
Article
Publication date: 19 February 2021

Hatice Beyza Sezer and Immaculate Kizito Namukasa

Many mathematical models have been shared to communicate about the COVID-19 outbreak; however, they require advanced mathematical skills. The main purpose of this study is to…

5185

Abstract

Purpose

Many mathematical models have been shared to communicate about the COVID-19 outbreak; however, they require advanced mathematical skills. The main purpose of this study is to investigate in which way computational thinking (CT) tools and concepts are helpful to better understand the outbreak, and how the context of disease could be used as a real-world context to promote elementary and middle-grade students' mathematical and computational knowledge and skills.

Design/methodology/approach

In this study, the authors used a qualitative research design, specifically content analysis, and analyzed two simulations of basic SIR models designed in a Scratch. The authors examine the extent to which they help with the understanding of the parameters, rates and the effect of variations in control measures in the mathematical models.

Findings

This paper investigated the four dimensions of sample simulations: initialization, movements, transmission, recovery process and their connections to school mathematical and computational concepts.

Research limitations/implications

A major limitation is that this study took place during the pandemic and the authors could not collect empirical data.

Practical implications

Teaching mathematical modeling and computer programming is enhanced by elaborating in a specific context. This may serve as a springboard for encouraging students to engage in real-world problems and to promote using their knowledge and skills in making well-informed decisions in future crises.

Originality/value

This research not only sheds light on the way of helping students respond to the challenges of the outbreak but also explores the opportunities it offers to motivate students by showing the value and relevance of CT and mathematics (Albrecht and Karabenick, 2018).

Details

Journal of Research in Innovative Teaching & Learning, vol. 14 no. 1
Type: Research Article
ISSN: 2397-7604

Keywords

Open Access
Article
Publication date: 30 July 2024

Wang Jijun, Zhang Huanxin, Shi Cheng and Wang Meng

Temperature is an important load for a ballastless track. However, little research has been conducted on the dynamic responses when a train travels on a ballastless track under…

Abstract

Purpose

Temperature is an important load for a ballastless track. However, little research has been conducted on the dynamic responses when a train travels on a ballastless track under the temperature gradient. The dynamic responses under different temperature gradients of the slab are theoretically investigated in this work.

Design/methodology/approach

Considering the moving train, the temperature gradient of the slab, and the gravity of the slab track, a dynamic model for a high-speed train that runs along the CRTS III slab track on subgrade is developed by a nonlinear coupled way in Abaqus.

Findings

The results are as follows: (1) The upward transmission of the periodic deformation of the slab causes periodic track irregularity. (2) Because of the geometric constraint of limiting structures, the maximum bending stresses of the slab occur near the end of the slab under positive temperature gradients, but in the middle of the slab under negative temperature gradients. (3) The periodic deformation of the slab can induce periodic changes in the interlayer stiffness and contact status, leading to a large vibration of the slab. Because of the vibration-reduction capacity of the fastener and the larger mass of the concrete base, the accelerations of both the slab and concrete base are far less than the acceleration of the rail.

Originality/value

This study reveals the influence mechanism of temperature gradient-induced periodic deformation in the dynamic responses of the train-track system, and it also provides a guide for the safe service of CRTS III slab track.

Details

Railway Sciences, vol. 3 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 1 September 2021

Pan Hu, Ying Wang, Tao Feng and Yuxin Duan

The purpose of this paper is to investigate three issues: how does an innovative search (local search and boundary-spanning search) impact firm innovation performance of…

2327

Abstract

Purpose

The purpose of this paper is to investigate three issues: how does an innovative search (local search and boundary-spanning search) impact firm innovation performance of latecomers; how does capability reconfiguration (capability evolution and capability substitution) mediates the relationship between innovative search and firm innovation performance; and how does the technological leapfrogging process (initial stage, following stage, synchronization stage and leading stage) moderate the relationship between capability reconfiguration and firm innovation performance.

Design/methodology/approach

A “resource-capability-performance” theoretical framework was developed to explore the relationships between local/boundary-spanning search, capability reconfiguration and firm innovation performance. The data were collected by sending out surveys to managers and employees in various industries in mainland China. These hypotheses were tested using structural equation models and hierarchical regressions.

Findings

The results showed that: innovative search has a direct causal relationship to capability reconfiguration; local search and boundary-spanning search are conducive to improve the innovation performance of latecomers; the impact of local search and boundary-spanning search on innovation performance is realized through the completion of mediating role of capability reconfiguration; there are differences in the path of local search and boundary-spanning search affecting the capability reconfiguration of enterprise innovation performance; and the relationship between innovative search, capability reconfiguration and enterprise innovation performance evolves with the enterprise in different stages of technological leapfrogging.

Originality/value

This study explores the relationship and the path of innovative search to firm innovation performance and analyzes the path difference between local search and boundary-spinning search, which enriches the research of organizational search and enterprise innovation. This paper reveals the whole path of innovative search affecting innovation performance, discusses the important role of capability reconfiguration and makes incremental contributions to dynamic capability theory. It studies the evolution of innovative search on innovation performance under the background of technological leapfrogging, which provides a new perspective for the study of organizational search and capability-based theory.

Details

Chinese Management Studies, vol. 15 no. 5
Type: Research Article
ISSN: 1750-614X

Keywords

Open Access
Article
Publication date: 14 June 2024

Si Chen, Haoran Lv, Yinming Zhao and Minning Wang

This paper aims to provide a new method to study and improve the dynamic characteristics of the four-column resistance strain force sensor through the elastomer structure design…

Abstract

Purpose

This paper aims to provide a new method to study and improve the dynamic characteristics of the four-column resistance strain force sensor through the elastomer structure design and optimization.

Design/methodology/approach

Based on the mechanism analysis method, the authors first present a dynamic characteristic model of the four-column resistance strain force sensors’ elastomer. Then, the authors verified and modified the model according to the Solidworks finite element simulation results. Finally, the authors designed and optimized two types of four-column elastomers based on the dynamic characteristic model and verified the improvement of sensor dynamic performance through a hammer knock dynamic experiment.

Findings

The Solidworks finite element simulation and hammer knock dynamic experiment results show that the relative error of the model is less than 10%, which confirms the accuracy of the model. The dynamic performance of the sensors based on the model can be improved by more than 30%, which is a great improvement in sensor dynamic performance.

Originality/value

The authors first present a dynamic characteristic model of the four-column elastomer and optimize the four-column sensors successfully based on the mechanism analysis method. And a new method to study and improve the dynamic characteristics of the resistance is provided.

Details

Sensor Review, vol. 44 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 15 March 2024

Di Cheng, Yuqing Wen, Zhiqiang Guo, Xiaoyi Hu, Pengsong Wang and Zhikun Song

This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit (EMU).

Abstract

Purpose

This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit (EMU).

Design/methodology/approach

Using the dynamic simulation based on field test, stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers were tested. Stiffness, damping coefficient, friction coefficient, track gauge were taken as random variables, the stochastic dynamics simulation method was constructed and applied to research the evolution law with running mileage of dynamic index of CR400BF EMU.

Findings

The results showed that stiffness and damping coefficient subjected to normal distribution, the mean and variance were computed and the evolution law of stiffness and damping coefficient with running mileage was obtained.

Originality/value

Firstly, based on the field test we found that stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers subjected to normal distribution, and the evolution law of stiffness and damping coefficient with running mileage was proposed. Secondly stiffness, damping coefficient, friction coefficient, track gauge were taken as random variables, the stochastic dynamics simulation method was constructed and applied to the research to the evolution law with running mileage of dynamic index of CR400BF EMU.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 2 March 2023

Kartik Venkatraman, Stéphane Moreau, Julien Christophe and Christophe Schram

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating…

1666

Abstract

Purpose

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating conditions. This paper aims at understanding the flow physics around a model VAWT for three different tip speed ratios corresponding to three different flow regimes.

Design/methodology/approach

This study achieves a first three-dimensional hybrid lattice Boltzmann method/very large eddy simulation (LBM-VLES) model for a complete scaled model VAWT with end plates and mast using the solver PowerFLOW. The power curve predicted from the numerical simulations is compared with the experimental data collected at Erlangen University. This study highlights the complexity of the turbulent flow features that are seen at three different operational regimes of the turbine using instantaneous flow structures, mean velocity, pressure iso-contours, blade loading and skin friction plots.

Findings

The power curve predicted using the LBM-VLES approach and setup provides a good overall match with the experimental power curve, with the peak and drop after the operational point being captured. Variable turbulent flow structures are seen over the azimuthal revolution that depends on the tip speed ratio (TSR). Significant dynamic stall structures are seen in the upwind phase and at the end of the downwind phase of rotation in the deep stall regime. Strong blade wake interactions and turbulent flow structures are seen inside the rotor at higher TSRs.

Research limitations/implications

The computational cost and time for such high-fidelity simulations using the LBM-VLES remains expensive. Each simulation requires around a week using supercomputing facilities. Further studies need to be performed to improve analytical VAWT models using inputs/calibration from high fidelity simulation databases. As a future work, the impact of turbulent and nonuniform inflow conditions that are more representative of a typical urban environment also needs to be investigated.

Practical implications

The LBM methodology is shown to be a reliable approach for VAWT power prediction. Dynamic stall and blade wake interactions reduce the aerodynamic performance of a VAWT. An ideal operation close to the peak of the power curve should be favored based on the local wind resource, as this point exhibits a smoother variation of forces improving operational performance. The 3D flow features also exhibit a significant wake asymmetry that could impact the optimal layout of VAWT clusters to increase their power density. The present work also highlights the importance of 3D simulations of the complete model including the support structures such as end plates and mast.

Social implications

Accurate predictions of power performance for Darrieus VAWTs could help in better siting of wind turbines thus improving return of investment and reducing levelized cost of energy. It could promote the development of onsite electricity generation, especially for industrial sites/urban areas and renew interest for VAWT wind farms.

Originality/value

A first high-fidelity simulation of a complete VAWT with end plates and supporting structures has been performed using the LBM approach and compared with experimental data. The 3D flow physics has been analyzed at different operating regimes of the turbine. These physical insights and prediction capabilities of this approach could be useful for commercial VAWT manufacturers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 26 May 2023

Mpho Trinity Manenzhe, Arnesh Telukdarie and Megashnee Munsamy

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

2745

Abstract

Purpose

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

Design/methodology/approach

The extant literature in physical assets maintenance depicts that poor maintenance management is predominantly because of a lack of a clearly defined maintenance work management process model, resulting in poor management of maintenance work. This paper solves this complex phenomenon using a combination of conceptual process modeling and system dynamics simulation incorporating 4IR technologies. A process for maintenance work management and its control actions on scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.

Findings

A process for maintenance work management is thus modeled and simulated as a dynamic system. Post-model validation, this study reveals that the real-world maintenance work management process can be replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work management systems reveals that the implementation of 4IR technologies intensifies asset performance with an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of 4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive maintenance strategy.

Research limitations/implications

The study focused on maintenance work management system without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply chain management.

Practical implications

The maintenance real-world quantitative data is retrieved from two maintenance departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance quantitative data retrieved represent six various types of equipment used at underground Mines. The maintenance management qualitative data (Organizational documents) in maintenance management are retrieved from company A and company B. Company A is a global mining industry, and company B is a global manufacturing industry. The reliability of the data used in the model validation have practical implications on how maintenance work management system behaves with the benefit of 4IR technologies' implementation.

Social implications

This research study yields an overall benefit in asset management, thereby intensifying asset performance. The expected learnings are intended to benefit future research in the physical asset management field of study and most important to the industry practitioners in physical asset management.

Originality/value

This paper provides for a model in which maintenance work and its dynamics is systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall maintenance work management. The use of a system dynamic model and simulation incorporating 4IR technologies adds value on the maintenance work management effectiveness.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of over 1000