Search results

1 – 10 of 206
Article
Publication date: 7 March 2023

Muthuram N. and Saravanan S.

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Abstract

Purpose

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Design/methodology/approach

In this work, through experiments and numerical simulations, an attempt has been made to increase the fundamental natural frequency of the PCB assembly as high as practically achievable so as to minimize the impacts of dynamic loads acting on it. An optimization tool in the finite element software (ANSYS) was used to search the specified design space for the optimal support location of the six fastening screws.

Findings

It is observed that by changing the support locations based on the optimization results the fundamental natural frequency can be raised up to 51.1% and the same is validated experimentally.

Research limitations/implications

Manufacturers of PCBs used in computers fix the support locations based on symmetric feature of the board not on the dynamic behavior of the assembly. This work might lead manufacturers to redesign the location of other surface mount components.

Practical implications

This work provides guidelines for PCB manufacturers to finalize their support locating points which will improve the dynamic characteristics of the PCB assembly during its functioning.

Originality/value

This study provides a novel method to improve the life of PCB based on support locations optimization which includes majority of the surface mount components that contributes to the total mass the PCB assembly.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 8 April 2024

Yimei Chen, Yixin Wang, Baoquan Li and Tohru Kamiya

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm…

Abstract

Purpose

The purpose of this paper is to propose a new velocity prediction navigation algorithm to develop a conflict-free path for robots in dynamic crowded environments. The algorithm BP-prediction and reciprocal velocity obstacle (PRVO) combines the BP neural network for velocity PRVO to accomplish dynamic collision avoidance.

Design/methodology/approach

This presented method exhibits innovation by anticipating ahead velocities using BP neural networks to reconstruct the velocity obstacle region; determining the optimized velocity corresponding to the robot’s scalable radius range from the error generated by the non-holonomic robot tracking the desired trajectory; and considering acceleration constraints, determining the set of multi-step reachable velocities of non-holonomic robot in the space of velocity variations.

Findings

The method is validated using three commonly used metrics of collision rate, travel time and average distance in a comparison between simulation experiments including multiple differential drive robots and physical experiments using the Turtkebot3 robot. The experimental results show that our method outperforms other RVO extension methods on the three metrics.

Originality/value

In this paper, the authors propose navigation algorithms capable of adaptively selecting the optimal speed for a multi-robot system to avoid robot collisions during dynamic crowded interactions.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 December 2023

M.A. Xianglin, Haochen Cai, Qiming Yang, Gang Wang and Kun Mao

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the…

Abstract

Purpose

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the newly developed assembly workstation.

Design/methodology/approach

First, spot check the trial production impellers and obtain three indexes that reflect the assembly quality of the impellers. Then, analyze the parameters that affect the assembly quality of the impeller using grey relational analysis (GRA), establish a model for the assembly quality of the range hood impeller based on the generalized grey relational degree and identify the main parameters. After that, analyze the transmission structure of automation assembly workstation, identify the reasons that affect parameters and propose improvement plans. Finally, a trial production is conducted on the automation assembly workstation after adopting the improved plan to verify the quality model of impeller automation assembly.

Findings

The research shows that compared to manual assembly, the automation assembly quality of the impeller using GRA model has been improved, shortening the debugging cycle of the newly developed assembly workstation.

Practical implications

The newly developed automation equipment will have some problems in the trial production stage, which often rely on the experience of engineers for debugging. In this paper, the automation assembly quality model of range hood impeller based on GRA is established, which can not only ensure the quality of finished impeller but also shorten the debugging cycle of the equipment. In addition, GRA can be widely used in the commissioning of other automation equipment.

Originality/value

This study has developed a set of impeller automation assembly workstation. The debugging method in the trial production stage is beneficial to shorten the trial production time and improve the economic benefits.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 15 April 2024

Amer Mecellem, Soufyane Belhenini, Douaa Khelladi and Caroline Richard

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic…

Abstract

Purpose

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic component assemblies requires the adoption of several simplifying assumptions. This study introduces and validates simplified assumptions for modeling a four-point bend test on a PCB/wafer-level chip scale packaging assembly.

Design/methodology/approach

In this study, simplifying assumptions were used. These involved substituting dynamic imposed displacement loading with an equivalent static loading, replacing the spherical shape of the interconnections with simplified shapes (cylindrical and cubic) and transitioning from a three-dimensional modelling approach to an equivalent two-dimensional model. The validity of these simplifications was confirmed through both quantitative and qualitative comparisons of the numerical results obtained. The maximum principal plastic strain in the solder balls and copper pads served as the criteria for comparison.

Findings

The simplified hypotheses were validated through quantitative and qualitative comparisons of the results from various models. Consequently, it was determined that the replacement of dynamic loading with equivalent static loading had no significant impact on the results. Similarly, substituting the spherical shape of interconnections with an equivalent shape and transitioning from a three-dimensional approach to a two-dimensional one did not substantially affect the precision of the obtained results.

Originality/value

This study serves as a valuable resource for researchers seeking to model accelerated reliability tests, particularly in the context of four-point bending tests. The results obtained in this study will assist other researchers in streamlining their numerical models, thereby reducing calculation costs through the utilization of the simplified hypotheses introduced and validated herein.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 30 April 2024

Shiqing Wu, Jiahai Wang, Haibin Jiang and Weiye Xue

The purpose of this study is to explore a new assembly process planning and execution mode to realize rapid response, reduce the labor intensity of assembly workers and improve…

Abstract

Purpose

The purpose of this study is to explore a new assembly process planning and execution mode to realize rapid response, reduce the labor intensity of assembly workers and improve the assembly efficiency and quality.

Design/methodology/approach

Based on the related concepts of digital twin, this paper studies the product assembly planning in digital space, the process execution in physical space and the interaction between digital space and physical space. The assembly process planning is simulated and verified in the digital space to generate three-dimensional visual assembly process specification documents, the implementation of the assembly process specification documents in the physical space is monitored and feed back to revise the assembly process and improve the assembly quality.

Findings

Digital twin technology enhances the quality and efficiency of assembly process planning and execution system.

Originality/value

It provides a new perspective for assembly process planning and execution, the architecture, connections and data acquisition approaches of the digital twin-driven framework are proposed in this paper, which is of important theoretical values. What is more, a smart assembly workbench is developed, the specific image classification algorithms are presented in detail too, which is of some industrial application values.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 April 2024

Qiang Du, Yerong Zhang, Lingyuan Zeng, Yiming Ma and Shasha Li

Prefabricated buildings (PBs) have proven to effectively mitigate carbon emissions in the construction industry. Existing studies have analyzed the environmental performance of…

Abstract

Purpose

Prefabricated buildings (PBs) have proven to effectively mitigate carbon emissions in the construction industry. Existing studies have analyzed the environmental performance of PBs considering the shift in construction methods, ignoring the emissions abatement effects of the low-carbon practices adopted by participants in the prefabricated building supply chain (PBSC). Thus, it is challenging to exploit the environmental advantages of PBs. To further reveal the carbon reduction potential of PBs and assist participants in making low-carbon practice strategy decisions, this paper constructs a system dynamics (SD) model to explore the performance of PBSC in low-carbon practices.

Design/methodology/approach

This study adopts the SD approach to integrate the complex dynamic relationship between variables and explicitly considers the environmental and economic impacts of PBSC to explore the carbon emission reduction effects of low-carbon practices by enterprises under environmental policies from the supply chain perspective.

Findings

Results show that with the advance of prefabrication level, the carbon emissions from production and transportation processes increase, and the total carbon emissions of PBSC show an upward trend. Low-carbon practices of rational transportation route planning and carbon-reduction energy investment can effectively reduce carbon emissions with negative economic impacts on transportation enterprises. The application of sustainable materials in low-carbon practices is both economically and environmentally friendly. In addition, carbon tax does not always promote the implementation of low-carbon practices, and the improvement of enterprises' environmental awareness can further strengthen the effect of low-carbon practices.

Originality/value

This study dynamically assesses the carbon reduction effects of low-carbon practices in PBSC, informing the low-carbon decision-making of participants in building construction projects and guiding the government to formulate environmental policies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 December 2023

Zihan Dang and Naiming Xie

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and…

Abstract

Purpose

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and capacity forecasting the most troublesome problems for production managers. In this paper, uncertain man-hours are represented as interval grey numbers, and the optimization problem of production line balance in the case of interval grey man-hours is studied to better evaluate the production line capacity.

Design/methodology/approach

First, this paper constructs the basic model of assembly line balance optimization for the single-product scenario, and on this basis constructs an assembly line balance optimization model under the multi-product scenario with the objective function of maximizing the weighted greyscale production line balance rate, second, this paper designs a simulated annealing algorithm to solve problem. A neighborhood search strategy is proposed, based on assembly line balance optimization, an assembly line capacity evaluation method with interval grey man-hour characteristics is designed.

Findings

This paper provides a production line balance optimization scheme with uncertain processing time for multi-product scenarios and designs a capacity evaluation method to provide managers with scientific management strategies so that decision-makers can scientifically solve the problems that the company's design production line is quite different from the actual production situation.

Originality/value

There are few literary studies on combining interval grey number with assembly line balance optimization. Therefore, this paper makes an important contribution in this regard.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 25 January 2024

Anil Kumar Inkulu and M.V.A. Raju Bahubalendruni

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study…

Abstract

Purpose

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.

Design/methodology/approach

A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.

Findings

The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.

Originality/value

This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 December 2023

Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…

115

Abstract

Purpose

The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.

Design/methodology/approach

The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.

Findings

A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.

Research limitations/implications

The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.

Originality/value

To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 206