Search results

1 – 6 of 6
Article
Publication date: 26 April 2024

Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…

Abstract

Purpose

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.

Design/methodology/approach

The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.

Findings

The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.

Originality/value

Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 July 2019

Mohammad Ghalambaz, Mahmoud Sabour, Ioan Pop and Dongsheng Wen

The present study aims to address the flow and heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a complex shape enclosure filled with a porous medium. The enclosure is subject…

Abstract

Purpose

The present study aims to address the flow and heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a complex shape enclosure filled with a porous medium. The enclosure is subject to a uniform inclined magnetic field and radiation effects. The effect of the presence of a variable magnetic field on the natural convection heat transfer of hybrid nanofluids in a complex shape cavity is studied for the first time. The geometry of the cavity is an annular space with an isothermal wavy outer cold wall. Two types of the porous medium, glass ball and aluminum metal foam, are adopted for the porous space. The governing equations for mass, momentum and heat transfer of the hybrid nanofluid are introduced and transformed into non-dimensional form. The actual available thermal conductivity and dynamic viscosity data for the hybrid nanofluid are directly used for thermophysical properties of the hybrid nanofluid.

Design/methodology/approach

The governing equations for mass, momentum and heat transfer of hybrid nanofluid are introduced and transformed into non-dimensional form. The thermal conductivity and dynamic viscosity of the nanofluid are directly used from the experimental results available in the literature. The finite element method is used to solve the governing equations. Grid check procedure and validations were performed.

Findings

The effect of Hartmann number, Rayleigh number, Darcy number, the shape of the cavity and the type of porous medium on the thermal performance of the cavity are studied. The outcomes show that using the composite nanoparticles boosts the convective heat transfer. However, the rise of the volume fraction of nanoparticles would reduce the overall enhancement. Considering a convective dominant regime of natural convection flow with Rayleigh number of 107, the maximum enhancement ratio (Nusselt number ratio compared to the pure fluid) for the case of glass ball is about 1.17 and for the case of aluminum metal foam is about 1.15 when the volume fraction of hybrid nanoparticles is minimum as 0.2 per cent.

Originality/value

The effect of the presence of a variable magnetic field on the natural convection heat transfer of a new type of hybrid nanofluids, MgO-MWCNTs/EG, in a complex shape cavity is studied for the first time. The results of this paper are new and original with many practical applications of hybrid nanofluids in the modern industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Energy Security in Times of Economic Transition: Lessons from China
Type: Book
ISBN: 978-1-83982-465-4

Article
Publication date: 26 August 2014

Štefan Bojnec, Imre Fertő and József Fogarasi

The purpose of this paper is to investigate the impacts of institutional quality (IQ) in exporting and importing countries on agro-food exports from the world's leading emerging…

Abstract

Purpose

The purpose of this paper is to investigate the impacts of institutional quality (IQ) in exporting and importing countries on agro-food exports from the world's leading emerging economies: Brazil, the Russian Federation, India and China (BRIC countries).

Design/methodology/approach

Measuring is based on using the gravity trade model and econometric panel data analysis for the period 1998-2009.

Findings

Agro-food exports from the BRIC countries, particularly Brazil and China, have increased. The Russian Federation has experienced stagnating and volatile patterns. Brazil and India have strengthened market shares in the existing importing markets, while the Russian Federation has experienced severe deterioration. The export of existing products is more important than of new products. Agro-food exports are positively associated with IQ and the size of the gross domestic product in exporting and importing countries, but negatively with distance.

Research limitations/implications

Among IQ variables, the focus is on the indices of legal structure and security of property rights and freedom to trade internationally in agro-food importing countries and the BRIC exporting countries.

Practical implications

Different institutions and their quality can affect agro-food exports differently. The impact of institutions is not uniform across product groups.

Originality/value

This paper adds the impacts of IQ on agro-food exports. Except for processed products for final household consumption, agro-food exports from the BRIC countries are positively associated with the quality of the legal structure, the security of property rights and the freedom to trade internationally as IQ in exporting and importing countries.

Details

China Agricultural Economic Review, vol. 6 no. 3
Type: Research Article
ISSN: 1756-137X

Keywords

Article
Publication date: 22 January 2024

Yilun Wang, Xiaofen Ji, Chen Pang and Lina Zhai

Esthetic trend changes with the development of society and cultural differences. A minimizer bra designed to make breasts appear smaller is now popular with large-breasted women…

Abstract

Purpose

Esthetic trend changes with the development of society and cultural differences. A minimizer bra designed to make breasts appear smaller is now popular with large-breasted women in China. To conform to the requirements of modern aesthetics in China, this paper aims to investigate vital features of breast appearance that influence people’s subjective evaluation of breast size and analyze how bra design parameters affect breast shape and make breasts appear smaller.

Design/methodology/approach

This study used 3D scanning technology and reverse engineering software to obtain objective breast measurements in detail. A subjective evaluation experiment was conducted to evaluate the overall performance of seven minimizer bras compared to a basic comparison bra. Around 20 design parameters of 8 sample bras were identified to make a further study about the correlation between bra design features and breast shaping effect. To gain a deeper understanding of how bras interact with breast tissue, this study presented heat maps of the breast surface to visualize the deformation of breast shape.

Findings

Nine breasts' characteristics, such as the distance between bust points, breast depth, outer breast curvature and slope, etc. have been determined to be highly correlated with the visual reduction effect of breasts. In addition, for the bras in this experiment, the high-performance bra for women with large breasts tends to have a wider side panel, a wider under band, higher gore and a stronger transverse rigidity of the bra cup. According to the observation of heat maps of the breast surface, soft full-figure bras provide a wider range of compression to the breasts and effectively flatten the breasts.

Originality/value

This paper first aimed at the need to shape the ideal breast appearance for large-breasted women and make a further study of several hot-selling minimizer bras in China. The suggestions given in this paper help lingerie manufacturers better understand how design features of bras can affect their shaping effect and improve the wearing effect of minimizer bras for large-breasted women.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 December 2020

Junzhou Yang, Jianjun Wu, Qianwen Zhang, Yinxiang Ren, Han Ruolan and Kaiwei Wang

With the discussion on the linear relationship of determined material parameters, this study aims to propose a new method to analyze the deformation mechanism.

Abstract

Purpose

With the discussion on the linear relationship of determined material parameters, this study aims to propose a new method to analyze the deformation mechanism.

Design/methodology/approach

A modified constitutive model based on the hyperbolic sine Arrhenius equation has been established, which is applied to describe the flow behavior of Ti-6Al-4V alloy during the superplastic forming (SPF).

Findings

The modified constitutive model in this work has a good ability to describe the flow behavior for Ti-6Al-4V in SPF. Besides, a deformation map of titanium material is obtained based on the parameters. As the supplement, finite element models of high-temperature tensile tests are carried out as the application of the constitutive model.

Originality/value

The relationship between constitutive model parameters and forming mechanism is established, which is a new angle in rheological behavior research and constitutive model analysis.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 6 of 6