Search results

1 – 10 of 499
Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 23 February 2024

Emmadonata Carbone, Donata Mussolino and Riccardo Viganò

This study investigates the relationship between board gender diversity (BGD) and the time to Initial Public Offering (IPO), which stands as an entrepreneurially risky choice…

Abstract

Purpose

This study investigates the relationship between board gender diversity (BGD) and the time to Initial Public Offering (IPO), which stands as an entrepreneurially risky choice, particularly challenging in family firms. We also investigate the moderating role of family ownership dispersion (FOD).

Design/methodology/approach

We draw on an integrated theoretical framework bringing together the upper echelons theory and the socio-emotional wealth (SEW) perspective and on hand-collected data on a sample of Italian family IPOs that occurred in the period 2000–2020. We employ ordinary least squares (OLS) regression and alternative model estimations to test our hypotheses.

Findings

BGD positively affects the time to IPO, thus, it increases the time required to go public. FOD negatively moderates this relationship. Our findings remain robust with different measures for BGD, FOD, and family business definition as well as with different econometric models.

Originality/value

The article develops literature on family firms and IPO and it enriches the academic debate about gender and IPOs in family firms. It adds to studies addressing the determinants of the time to IPO by incorporating gender diversity and the FOD into the discussion. Finally, it contributes to research on women and outcomes in family firms.

Details

Management Decision, vol. 62 no. 13
Type: Research Article
ISSN: 0025-1747

Keywords

Open Access
Article
Publication date: 28 April 2022

Manuel Pedro Rodríguez Bolívar and Laura Alcaide Muñoz

This study aims to conduct performance and clustering analyses with the help of Digital Government Reference Library (DGRL) v16.6 database examining the role of emerging…

2150

Abstract

Purpose

This study aims to conduct performance and clustering analyses with the help of Digital Government Reference Library (DGRL) v16.6 database examining the role of emerging technologies (ETs) in public services delivery.

Design/methodology/approach

VOSviewer and SciMAT techniques were used for clustering and mapping the use of ETs in the public services delivery. Collecting documents from the DGRL v16.6 database, the paper uses text mining analysis for identifying key terms and trends in e-Government research regarding ETs and public services.

Findings

The analysis indicates that all ETs are strongly linked to each other, except for blockchain technologies (due to its disruptive nature), which indicate that ETs can be, therefore, seen as accumulative knowledge. In addition, on the whole, findings identify four stages in the evolution of ETs and their application to public services: the “electronic administration” stage, the “technological baseline” stage, the “managerial” stage and the “disruptive technological” stage.

Practical implications

The output of the present research will help to orient policymakers in the implementation and use of ETs, evaluating the influence of these technologies on public services.

Social implications

The research helps researchers to track research trends and uncover new paths on ETs and its implementation in public services.

Originality/value

Recent research has focused on the need of implementing ETs for improving public services, which could help cities to improve the citizens’ quality of life in urban areas. This paper contributes to expanding the knowledge about ETs and its implementation in public services, identifying trends and networks in the research about these issues.

Details

Information Technology & People, vol. 37 no. 8
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 27 February 2023

Dhanraj P. Tambuskar, Prashant Jain and Vaibhav S. Narwane

With big data (BD), traditional supply chain is shifting to digital supply chain. This study aims to address the issues and challenges in the way toward the implementation of big…

Abstract

Purpose

With big data (BD), traditional supply chain is shifting to digital supply chain. This study aims to address the issues and challenges in the way toward the implementation of big data analytics (BDA) in sustainable supply chain management (SSCM).

Design/methodology/approach

The factors that affect the implementation of BDA in SSCM are identified through a widespread literature review. The PESTEL framework is used for this purpose as it covers all the political, economic, social, technological, environmental and legal factors. These factors are then finalized by means of experts' opinion and analyzed using structural equation modeling (SEM).

Findings

A total of 10 factors are finalized with 31 sub-factors, of which sustainable performance, competitive advantage, stakeholders' involvement and capabilities, lean and green practices and improvement in environmental performance are found to be the critical factors for the implementation of BDA in SSCM.

Research limitations/implications

This research has taken up the case of Indian manufacturing industry. It can be diversified to other geographical areas and industry sectors. Further, the quantitative analysis may be undertaken with structured or semi-structured interviews for validation of the proposed model.

Practical implications

This research provides an insight to managers regarding the implementation of BDA in SSCM by identifying and examining the influencing factors. The results may be useful for managers for the implementation of BDA and budget allocation for BDA project.

Social implications

The result includes green practices and environmental performance as critical factors for the implementation of BDA in SSCM. Thus the research establishes a positive relationship between BDA and sustainable manufacturing that ultimately benefits the environment and society.

Originality/value

This research addresses the challenges in the implementation of BDA in SSCM in Indian manufacturing sector, where such application is at its nascent stage. The use of PESTEL framework for identifying and categorizing the factors makes the study more worthwhile, as it covers full spectrum of the various factors that affect the strategic business decisions.

Article
Publication date: 25 April 2024

Ahmad Ghaith and Ma Huimin

Organizations working in high-hazard environments contribute significantly to modern society and the economy, not only for the valuable resources they hold but also for the…

Abstract

Purpose

Organizations working in high-hazard environments contribute significantly to modern society and the economy, not only for the valuable resources they hold but also for the indispensable products and services they provide, such as power generation, transportation and defense weapons. Therefore, the main purpose of this study is to develop a framework that outlines future research on systems safety and provides a better understanding of how organizations can effectively manage hazard events.

Design/methodology/approach

In this research, we developed the high hazard theory (HHT) and a theoretical framework based on the grounded theory method (GTM) and the integration of three established theoretical perspectives: normal accident theory (NAT), high reliability theory (HRT) and resilience engineering (RE) theory.

Findings

We focused on the temporal aspect of accidents to create a timeline showing the progression of hazard events and the factors contributing to safety and hazards in organizations. Given the limitations of the previous theories in providing a coherent explanation of hazard event escalation in high-hazard organizations (HHOs), we argue that the highlighted theories can be more complementary than contradictory regarding their standpoints on disasters and accident prevention.

Practical implications

A proper appreciation of the hazard nature of organizations can help reduce their susceptibility to failure, prevent outages and breakdowns of systems, identify areas for improvement and develop strategies to enhance performance.

Originality/value

By developing HHT, we contribute to systems safety research by developing a new, refined theory and enrich the theoretical debate. We also expand the understanding of scholars and practitioners about the characteristics of organizations working in high-hazard environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 April 2024

Tarek Taha Kandil

This study aims to develop the alleviating bullwhip effects framework (ABEF) replenishment rules, and bullwhip, inventory fluctuations and customer service fulfilment rates were…

Abstract

Purpose

This study aims to develop the alleviating bullwhip effects framework (ABEF) replenishment rules, and bullwhip, inventory fluctuations and customer service fulfilment rates were examined. In addition, automated smoothing and replenishment rules can alleviate supply chain bullwhip effects. This study aims to understand the current artificial intelligence (AI) implementation practice in alleviating bullwhip effects in supply chain management. This study aimed to develop a system for writing reviews using a systematic approach.

Design/methodology/approach

The methodology for the present study consists of three parts: Part 1 deals with the systematic review process. In Part 2, the study applies social network analysis (SNA) to the fourth phase of the systematic review process. In Part 3, the author discusses developing research clusters to analyse the research state more granularly. Systematic literature reviews synthesize scientific evidence through repeatable, transparent and rigorous procedures. By using this approach, you can better interpret and understand the data. The author used two databases (EBSCO and World of Science) for unbiased analysis. In addition, systematic reviews follow preferred reporting items for systematic reviews and meta-analyses.

Findings

The study uses UCINET6 software to analyse the data. The study found that specific topics received high centrality (more attention) from scholars when it came to the study topic. Contrary to this, others experienced low centrality scores when using NETDRAW visualization graphs and dynamic capability clusters. Comprehensive analyses are used for the study’s comparison of clusters.

Research limitations/implications

This study used a journal publication as the only source of information. Peer-reviewed journal papers were eliminated for their lack of rigorousness in evaluating the state of practice. This paper discusses the bullwhip effect of digital technology on supply chain management. Considering the increasing use of “AI” in their publications, other publications dealing with sensor integration could also have been excluded. To discuss the top five and bottom five topics, the author used magazines and tables.

Practical implications

The study explores the practical implications of smoothing the bullwhip effect through AI systems, collaboration, leadership and digital skills. Artificial intelligence is rapidly becoming a preferred tool in the supply chain, so management must understand the opportunities and challenges associated with its implementation. Furthermore, managers should consider how AI can influence supply chain collaboration concerning trust and forecasting to smooth the bullwhip effect.

Social implications

Digital leadership and addressing the digital skills gap are also essential for the success of AI systems. According to the framework, it is necessary to balance AI performance and accountability. As a result of the framework and structured management approach, the author can examine the implications of AI along the supply chain.

Originality/value

The study uses a systematic literature review based on SNA to analyse how AI can alleviate the bullwhip effects of supply chain disruption and identify the focused and the most important AI topics related to the bullwhip phenomena. SNA uses qualitative and quantitative methodologies to identify research trends, strengths, gaps and future directions for research. Salient topics for reviewing papers were identified. Centrality metrics were used to analyse the contemporary topic’s importance, including degree, betweenness and eigenvector centrality. ABEF is presented in the study.

Details

Journal of Global Operations and Strategic Sourcing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 24 April 2024

Haider Jouma, Muhamad Mansor, Muhamad Safwan Abd Rahman, Yong Jia Ying and Hazlie Mokhlis

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand…

Abstract

Purpose

This study aims to investigate the daily performance of the proposed microgrid (MG) that comprises photovoltaic, wind turbines and is connected to the main grid. The load demand is a residential area that includes 20 houses.

Design/methodology/approach

The daily operational strategy of the proposed MG allows to vend and procure utterly between the main grid and MG. The smart metre of every consumer provides the supplier with the daily consumption pattern which is amended by demand side management (DSM). The daily operational cost (DOC) CO2 emission and other measures are utilized to evaluate the system performance. A grey wolf optimizer was employed to minimize DOC including the cost of procuring energy from the main grid, the emission cost and the revenue of sold energy to the main grid.

Findings

The obtained results of winter and summer days revealed that DSM significantly improved the system performance from the economic and environmental perspectives. With DSM, DOC on winter day was −26.93 ($/kWh) and on summer day, DOC was 10.59 ($/kWh). While without considering DSM, DOC on winter day was −25.42 ($/kWh) and on summer day DOC was 14.95 ($/kWh).

Originality/value

As opposed to previous research that predominantly addressed the long-term operation, the value of the proposed research is to investigate the short-term operation (24-hour) of MG that copes with vital contingencies associated with selling and procuring energy with the main grid considering the environmental cost. Outstandingly, the proposed research engaged the consumers by smart meters to apply demand-sideDSM, while the previous studies largely focused on supply side management.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 9 January 2024

Mahendra Saha, Pratibha Pareek, Harsh Tripathi and Anju Devi

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of…

Abstract

Purpose

First is to develop the time truncated median control chart for the Rayleigh distribution (RD) and generalized RD (GRD), respectively. Second is to evaluate the performance of the proposed attribute control chart which depends on the average run length (ARL) and third is to include real life examples for application purpose of the proposed attribute control chart.

Design/methodology/approach

(1) Select a random sample of size n from each subgroup from the production process and put them on a test for specified time t, where t = ? × µe. Then, count the numbers of failed items in each subgroup up to time t. (2) Step 2: Using np chart, define D = np, the number of failures, which also a random variable follows the Binomial distribution. It is better to use D = np chart rather than p chart because the authors are using number of failure rather than proportion of failure p. When the process is in control, then the parameters of the binomial distribution are n and p0, respectively. (3) Step 3: The process is said to be in control if LCL = D = UCL; otherwise, the process is said to be out of control. Hence, LCL and UCL for the proposed control chart.

Findings

From the findings, it is concluded that the GRD has smaller ARL values than the RD for specified values of parameters, which indicate that GRD performing well for out of control signal as compared to the RD.

Research limitations/implications

This developed control chart is applicable when real life situation coincide with RD and GRD.

Social implications

Researcher can directly use presented study and save consumers from accepting bad lot and also encourage producers to make good quality products so that society can take benefit from their products.

Originality/value

This article dealt with time truncated attribute median control chart for non-normal distributions, namely, the RD and GRD, respectively. The structure of the proposed control chart is developed based on median lifetime of the RD and GRD, respectively.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 26 April 2024

Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…

Abstract

Purpose

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.

Design/methodology/approach

The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.

Findings

The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.

Originality/value

Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 2 January 2024

Eylem Thron, Shamal Faily, Huseyin Dogan and Martin Freer

Railways are a well-known example of complex critical infrastructure, incorporating socio-technical systems with humans such as drivers, signallers, maintainers and passengers at…

Abstract

Purpose

Railways are a well-known example of complex critical infrastructure, incorporating socio-technical systems with humans such as drivers, signallers, maintainers and passengers at the core. The technological evolution including interconnectedness and new ways of interaction lead to new security and safety risks that can be realised, both in terms of human error, and malicious and non-malicious behaviour. This study aims to identify the human factors (HF) and cyber-security risks relating to the role of signallers on the railways and explores strategies for the improvement of “Digital Resilience” – for the concept of a resilient railway.

Design/methodology/approach

Overall, 26 interviews were conducted with 21 participants from industry and academia.

Findings

The results showed that due to increased automation, both cyber-related threats and human error can impact signallers’ day-to-day operations – directly or indirectly (e.g. workload and safety-critical communications) – which could disrupt the railway services and potentially lead to safety-related catastrophic consequences. This study identifies cyber-related problems, including external threats; engineers not considering the human element in designs when specifying security controls; lack of security awareness among the rail industry; training gaps; organisational issues; and many unknown “unknowns”.

Originality/value

The authors discuss socio-technical principles through a hexagonal socio-technical framework and training needs analysis to mitigate against cyber-security issues and identify the predictive training needs of the signallers. This is supported by a systematic approach which considers both, safety and security factors, rather than waiting to learn from a cyber-attack retrospectively.

Details

Information & Computer Security, vol. 32 no. 2
Type: Research Article
ISSN: 2056-4961

Keywords

1 – 10 of 499