Search results

1 – 10 of 106
Article
Publication date: 6 December 2022

Pallav Rawal and Sanyog Rawat

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing…

Abstract

Purpose

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing the connectivity to cover different wireless services that operate different frequency range. Pattern reconfigurable antenna can improve security, avoid noise and save energy. Due to their compactness and better performance at different applications, reconfigurable antennas are very popular among the researchers. The purpose of this work, is to propose a novel design of S-shaped antenna with frequency and pattern diversity. The pattern and frequency reconfiguration are controlled via ON/OFF states of the PIN diode.

Design/methodology/approach

The geometrical structure of the proposed antenna dimension is 18 × 18 × 0.787 mm3 with εr = 2.2 dielectric constant. Three S-shaped patches are connected to a ring patch through PIN diodes. The approximate circumference of ring patch is 18.84 mm and length of patch is 5 mm, so approximate length of radiating patch is 14.42 mm and effective dielectric constant is 1.93. Conductor backed coplanar waveguide (CPW) is used for feeding. The proposed antenna is designed and simulated on CST microwave studio and fabricated using photolithography process. Measurements have been done in anechoic chamber.

Findings

Antenna shows the dual band operation at 2.1 and 3.4 GHz frequency. The first band remains constant at 2.1 GHz resonant frequency and 200–400 MHz impedance bandwidth. Second band is switched at seven different resonant frequencies as 3.14, 3.45, 3.46, 3.68, 3.69, 3.83 and 3.86 GHz with switching of the diodes. The −10 dB bandwidth is more than 1.4 GHz.

Research limitations/implications

Pattern reconfigurability can be achieved using mechanical movement of antenna easily but it is not a reliable approach for planar antennas. Electronic switching method is used in proposed antenna. Antenna size is very small so fabrication is very crucial task. Measured results are deviated from simulation results due to fabrication error and effect of leads of diodes, connecting wires and battery.

Practical implications

The reconfiguration of the proposed antenna is controlled via ON/OFF states of the three PIN diodes. The lower band of 2.1 GHz is fixed, while second band is switched at five different resonant frequencies as 3.27, 3.41, 3.45, 3.55 and 3.88 GHz, with switching of the PIN diodes with all state of diodes and exhibit pattern reconfigurability at 2.1 GHz frequency. At second band center frequency is significantly changed with state of diodes and at 3.4 GHz pattern is also changed with state of diodes, hence antenna exhibits frequency and pattern reconfigurability.

Originality/value

A novel design of pattern and frequency reconfigurable antenna is proposed. Here, work is divided into two parts: first is frequency reconfiguration and second is radiation pattern reconfiguration. PIN diodes as switch are used to select the frequency band and reconfigure the radiation pattern. This proposed antenna design is novel dual band frequency and pattern reconfigurable antenna. It resonates at two distinct frequencies, i.e. 2.1 and 3.4 GHz, and has a pattern tilt from 0° to 355°. The conductor backed CPW feed technique is used for impedance matching.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 31 January 2024

Dangshu Wang, Menghu Chang, Licong Zhao, Yuxuan Yang and Zhimin Guan

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board…

Abstract

Purpose

This study aims to regarding the application of traditional pulse frequency modulation control full-bridge LLC resonant converters in wide output voltage fields such as on-board chargers, there are issues with wide frequency adjustment ranges and low conversion efficiency.

Design/methodology/approach

To address these issues, this paper proposes a fixed-frequency pulse width modulation (PWM) control strategy for a full-bridge LLC resonant converter, which adjusts the gain by adjusting the duty cycle of the switches. In the full-bridge LLC converter, the two switches of the lower bridge arm are controlled by a fixed-frequency and fixed duty cycle, with their switching frequency equal to the resonant frequency, whereas the two switches of the upper bridge arm are controlled by a fixed-frequency PWM to adjust the output voltage. The operation modes of the converter are analyzed in detail, and a mathematical model of the converter is established. The gain characteristics of the converter under the fixed-frequency PWM control strategy are deeply analyzed, and the conditions for implementing zero-voltage switching (ZVS) soft switching in the converter are also analyzed in detail. The use of fixed-frequency PWM control simplifies the design of resonant parameters, and the fixed-frequency control is conducive to the design of magnetic components.

Findings

According to the fixed-frequency PWM control strategy proposed in this paper, the correctness of the control strategy is verified through simulation and the development and testing of a 500-W experimental prototype. Test results show that the primary side switches of the converter achieve ZVS and the secondary side rectifier diodes achieve zero-current switching, effectively reducing the switching losses of the converter. In addition, the control strategy reduces the reactive circulating current of the converter, and the peak efficiency of the experimental prototype can reach 95.2%.

Originality/value

The feasibility of the fixed-frequency PWM control strategy was verified through experiments, which has significant implications for improving the efficiency of the converter and simplifying the design of resonant parameters and magnetic components in wide output voltage fields such as on-board chargers.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 December 2022

Xuliang Yao, Xiao Han, Yuefeng Liao and Jingfang Wang

This paper aims to better design the resonant tank parameters for LLC resonant converter. And, it is found that under heavy load, the voltage gain is affected by junction…

Abstract

Purpose

This paper aims to better design the resonant tank parameters for LLC resonant converter. And, it is found that under heavy load, the voltage gain is affected by junction capacitors of the primary side switching and the parasitic parameters of the secondary side diodes converted to the primary side, which will cause the voltage gain decreased when the switching frequency decreased.

Design/methodology/approach

This paper proposes an optimization parameters design method to solve this problem, which was based on impedance model considering the parasitic parameters of switching devices and diodes.

Findings

The effectiveness of the proposed method is verified by impedance Bode plots and experimental results.

Originality/value

From the perspective of impedance modeling, this paper finds the reasons for the insufficient voltage regulation capability of LLC resonant converters under heavy load and finds solutions through analysis.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 6 February 2024

Alireza Goudarzian and Rohallah Pourbagher

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of…

25

Abstract

Purpose

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of these converters shows that a right-half-plane (RHP) zero appears in their control-to-output transfer function, exhibiting a nonminimum-phase stability. This RHP zero can limit the frequency response and dynamic specifications of the converters; therefore, the output voltage response is sluggish. To overcome these problems, the purpose of this study is to analyze, model and design a new isolated forward single-ended primary-inductor converter (IFSEPIC) through RHP zero alleviation.

Design/methodology/approach

At first, the normal operation of the suggested IFSEPIC is studied. Then, its average model and control-to-output transfer function are derived. Based on the obtained model and Routh–Hurwitz criterion, the components are suitably designed for the proposed IFSEPIC, such that the derived dynamic model can eliminate the RHP zero.

Findings

The advantages of the proposed IFSEPIC can be summarized as: This converter can provide conditions to achieve fast dynamic behavior and minimum-phase stability, owing to the RHP zero cancellation; with respect to conventional isolated converters, a larger gain can be realized using the proposed topology; thus, it is possible to attain a smaller operating duty cycle; for conventional isolated converters, transformer core saturation is a major concern, owing to a large magnetizing current. However, the average value of the magnetizing current becomes zero for the proposed IFSEPIC, thereby avoiding core saturation, particularly at high frequencies; and the input current of the proposed converter is continuous, reducing input current ripple.

Originality/value

The key benefits of the proposed IFSEPIC are shown via comparisons. To validate the design method and theoretical findings, a practical implementation is presented.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 April 2023

Dangshu Wang, Jiaan Yi, Luwen Song, Xuan Deng, Xinxia Wang and Zhen Dong

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Abstract

Purpose

This paper aims to solve the problems of large hard switching loss and unclear resonant parameter design in the existing inverter power supply topology.

Design/methodology/approach

This paper proposes a simple and reliable two-stage isolated inverter composed of series quasi-resonant push-pull and external freewheeling diode full-bridge inverter. The power supply topology is analyzed, the topology mode is analyzed, the mathematical model of the converter is established and the DC gain of the converter is deduced. The relationship between the load and the output gain of the resonant tank is presented, a new resonant parameter design method is proposed, and the parameter design of the resonant element of the converter is clarified.

Findings

The resonant components of the converter are designed according to the proposed resonant parameter design method, and the correctness of the method is verified by simulation and the development and testing of a 500 W experimental prototype. After experimental tests, the peak efficiency of the experimental prototype can reach 94%. Because the experimental prototype achieves soft switching, the heat generation of the switch is greatly reduced, so the heavy heat sink is removed, and the volume is reduced by about 30% compared with the traditional power supply, and the total harmonic distortion of the output voltage is about 2%.

Originality/value

The feasibility of the scheme is verified by experiments, which is of great significance for improving the efficiency of the inverter power supply and parameter optimization.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 April 2024

Erol Can and Ugur Kilic

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high…

Abstract

Purpose

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high frequency for electrical devices is used to reduce the weight of the cables in the aircraft and spacecraft because of the skin effect. In the high-frequency system, a thinner cable cross-section is used, and a great weight reduction occurs in the aircraft. So, fuel economy, less and late wear of the materials (landing gear, etc.) can be obtained with decreasing weight. This paper aims to present the development of a functional multilevel inverter (FMLI) with fractional sinus pulse width modulation (FSPWM) and a reduced number of switches to provide high-frequency and quality electrical energy conversion.

Design/methodology/approach

After the production of FSPWM for FMLI with a reduced component, which, to the best of the authors’ knowledge, is presented for the first time in this study, is explained step by step, and eight operating states are given according to different FSPWMs operating the circuit. The designed inverter and modulation technique are compared by testing the conventional modular multilevel inverter on different loads.

Findings

According to application results, it is seen that there is a 50% reduction in cross-section from 100 Hz to 400 Hz with the skin effect. At 1000 Hz, there is a 90% cross-section reduction. The decrease can be in cable weights that may occur in aircraft from 10 kg to 100 kg according to different frequencies. It causes less harmonic distortion than conventional converters. This supports the safer operation of the system. Compared to the traditional system, the proposed system provides more amplitude in converting the source to alternating voltage and increases the efficiency.

Practical implications

FSPWM is developed for multilevel inverters with reduced components at the high frequency and cascaded switching studies in the power electronics of aircraft.

Social implications

Although the proposed system has less current and power loss as mentioned in the previous sections, it contains fewer power elements than conventional inverters that are equivalent for different hardware levels. This not only reduces the cost of the system but also provides ease of maintenance. To reduce the cable load in aircraft and create more efficient working conditions, 400 Hz alternative voltage is used. The proposed system causes less losses and lower harmonic distortions than traditional systems. This will reduce possible malfunctions and contribute to aircraft reliability for passengers and cargo. As technology develops, it is revealed that the proposed inverter system will be more efficient than traditional inverters when devices operating at frequencies higher than 400 Hz are used. With the proposed inverter, safer operation will be ensured, while there will be less energy loss, less fuel consumption and less carbon emissions to the environment.

Originality/value

The proposed inverter structure shows that it can provide energy transmission for electrical devices in space and aircraft by using the skin effect. It also contains less power elements than the traditional inverters, which are equivalent for different levels of hardware.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 November 2021

Paul James Dunn, Adekunle Sabitu Oyegoke, Saheed Ajayi, Roshani Palliyaguru and Ganesh Devkar

The recent surge in light emitting diode (LED) lighting retrofitted into schools in the UK is as a result of the UK Government’s 2050 zero carbon pledge. However, the benefits and…

Abstract

Purpose

The recent surge in light emitting diode (LED) lighting retrofitted into schools in the UK is as a result of the UK Government’s 2050 zero carbon pledge. However, the benefits and consequences of LED retrofit projects for staff and enablers and stakeholder knowledge gaps about LED lighting retrofitting have not been fully explored. The aim of this research is to determine the amount of savings in cost, carbon reduction and kilowatt usage and to confirm if repayment from energy and cost savings derived from LED retrofit school projects funded through the SALIX funding option in the UK would be enough to service the loan. Thus, it examines monetary and non-monetary benefits, internal project stakeholder knowledge gaps and the consequences of LED retrofit for the staff and enablers of a large community college in the UK which is funded through the SALIX funding option.

Design/methodology/approach

The methodology relied on a hybrid research approach of a case secondary school through the review of literature, analysis of secondary data, focus group and questionnaire survey. The focus group consists of six key project stakeholders. The secondary data was sourced from the Project IGP [Individual Grade Proposal] and the Positive Energy Report from Zenergi, and the closed online questionnaire survey was used to sample 150 teaching staff and school enablers.

Findings

The findings show that stakeholders lack project knowledge, trust and expertise/project comprehension. This is in terms of baseline information, LED technology/management, payback modalities, management of risks and ethical issues around environmental impact. The forecasted SALIX savings were not achieved in real-time, partly because it does not take into consideration the increase in energy costs over the payback period. However, the LED retrofit creates efficiencies; drives down energy costs and energy usage; and drives carbon reduction, helping pupils’ learning, improving productivity and performance, and finally leading to a better lighting environment for the school community.

Originality/value

The study will help schools in the UK that intend to access SALIX finance for LED retrofits to understand the challenges and mitigate the risks. It will also help the government to understand the importance of adjusting the payback modalities to the base price when the retrofit was carried out for real-time savings to be made. The research would be useful in ensuring the proactive involvement of all the identified stakeholders in understanding the challenges and what the function entails.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 February 2024

Mohamed Bechir Ben Hamida

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration…

Abstract

Purpose

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration selected according to a lower temperature. This study provides valuable insights into how to design LED arrays with lower junction temperatures.

Design/methodology/approach

To determine the best configuration of a heat sink, a numerical study was conducted in Comsol Multiphysics on 10 different configurations. The configuration with the lowest junction temperature was selected for further analysis. The number of LED chips, pitch and LED power were then varied to determine the optimal configuration for this heat sink. A general equation for the average LED temperature as a function of these three factors was derived using Minitab software.

Findings

Among 10 configurations of the rectangular heat sink, we deduce that the best configuration corresponds to the first design having 1 mm of width, 0.5 mm of height and 45 mm of length. The average temperature for this design is 50.5 C. For the power of LED equal to 50 W–200 W, the average temperature of this LED drops when the number of LED chips reduces and the pitch size decreases. Indeed, the best array-LED corresponds to 64 LED chips and a pitch size of 0.5 mm. In addition, a generalization equation for average temperature is determined as a function of the number of LED chips, pitch and power of LED which are key factors for reducing the Junction temperature.

Originality/value

The study is original in its focus on three factors that have not been studied together in previous research. A numerical simulation method is used to investigate the impact of the three factors, which is more accurate and reliable than experimental methods. The study considers a wide range of values for the three factors, which allows for a more comprehensive understanding of their impact. It derives a general equation for the average temperature of the LED, which can be used to design LED arrays with desired junction temperatures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 October 2023

Xuliang Yao, Xiao Han, Yuefeng Liao and Jingfang Wang

This study aims to solve the problem that under light-load conditions, the output voltage regulation capability is lost due to the fact that the voltage gain of the LLC resonant…

Abstract

Purpose

This study aims to solve the problem that under light-load conditions, the output voltage regulation capability is lost due to the fact that the voltage gain of the LLC resonant converter does not decrease with the increase of the switching frequency.

Design/methodology/approach

In this paper, the impedance model considering the parasitic parameters of the primary and secondary sides is calculated under light-load conditions, the limitations of the previous method are explained and a new circuit improvement is proposed.

Findings

In this paper, an improved circuit is proposed, and the impedance Bode plot is used to verify that the circuit can effectively improve the voltage gain problem under light-load conditions. Finally, the experimental results verify the effectiveness of the proposed circuit through comparison with traditional solutions and circuits.

Originality/value

In this paper, the impedance model considering the parasitic parameters of the primary and secondary sides is calculated, the limitations of the previous method are explained and a new circuit improvement is proposed. When compared with the previous method, the proposed circuit improvement can suppress the voltage gain increase that occurs when the switching frequency increases to a certain level.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Content available
Article
Publication date: 29 September 2022

Kaiyuan Wu, Hao Huang, Ziwei Chen, Min Zeng and Tong Yin

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding…

Abstract

Purpose

This paper aims to overcome the limitations of low efficiency, low power density and strong electromagnetic interference (EMI) of the existing pulsed melt inert gas (MIG) welding power supply. So a novel and simplified implementation of digital high-power pulsed MIG welding power supply with LLC resonant converter is proposed in this work.

Design/methodology/approach

A simple parallel full-bridge LLC resonant converter structure is used to design the digital power supply with high welding current, low arc voltage, high open-circuit voltage and a wide range of arc loads, by effectively exploiting the variable load and high-power applications of LLC resonant converter.

Findings

The efficiency of each converter can reach up to 92.3%, under the rated operating condition. Notably, with proposed scheme, a short-circuit current mutation of 300 A can stabilize at 60 A within 8 ms. Furthermore, the pulsed MIG welding test shows that a stable welding process with 280 A peak current can be realized and a well-formed weld bead can be obtained, thereby verifying the feasibility of LLC resonant converter for pulsed MIG welding power supply.

Originality/value

The high efficiency, high power density and weak EMI of LLC resonant converter are conducive to the further optimization of pulsed MIG welding power supply. Consequently, a high performance welding power supply is implemented by taking adequate advantages of LLC resonant converter, which can provide equipment support for exploring better pulsed MIG welding processes.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 106