Search results

1 – 10 of 956
Article
Publication date: 2 September 2024

R. Rajaraman

This study explores the immobilisation of enzymes within porous catalysts of various geometries, including spheres, cylinders and flat pellets. The objective is to understand the…

Abstract

Purpose

This study explores the immobilisation of enzymes within porous catalysts of various geometries, including spheres, cylinders and flat pellets. The objective is to understand the irreversible Michaelis-Menten kinetic process within immobilised enzymes through advanced mathematical modelling.

Design/methodology/approach

Mathematical models were developed based on reaction-diffusion equations incorporating nonlinear variables associated with Michaelis-Menten kinetics. This research introduces fractional derivatives to investigate enzyme reaction kinetics, addressing a significant gap in the existing literature. A novel approximation method, based on the independent polynomials of the complete bipartite graph, is employed to explore solutions for substrate concentration and effectiveness factor across a spectrum of parameter values. The analytical solutions generated through the bipartite polynomial approximation method (BPAM) are rigorously tested against established methods, including the Bernoulli wavelet method (BWM), Taylor series method (TSM), Adomian decomposition method (ADM) and fourth-order Runge-Kutta method (RKM).

Findings

The study identifies two main findings. Firstly, the behaviour of dimensionless substrate concentration with distance is analysed for planar, cylindrical and spherical catalysts using both integer and fractional order Michaelis-Menten modelling. Secondly, the research investigates the variability of the dimensionless effectiveness factor with the Thiele modulus.

Research limitations/implications

The study primarily focuses on mathematical modelling and theoretical analysis, with limited experimental validation. Future research should involve more extensive experimental verification to corroborate the findings. Additionally, the study assumes ideal conditions and uniform catalyst properties, which may not fully reflect real-world complexities. Incorporating factors such as mass transfer limitations, non-uniform catalyst structures and enzyme deactivation kinetics could enhance the model’s accuracy and broaden its applicability. Furthermore, extending the analysis to include multi-enzyme systems and complex reaction networks would provide a more comprehensive understanding of biocatalytic processes.

Practical implications

The validated bipartite polynomial approximation method presents a practical tool for optimizing enzyme reactor design and operation in industrial settings. By accurately predicting substrate concentration and effectiveness factor, this approach enables efficient utilization of immobilised enzymes within porous catalysts. Implementation of these findings can lead to enhanced process efficiency, reduced operating costs and improved product yields in various biocatalytic applications such as pharmaceuticals, food processing and biofuel production. Additionally, this research fosters innovation in enzyme immobilisation techniques, offering practical insights for engineers and researchers striving to develop sustainable and economically viable bioprocesses.

Social implications

The advancement of enzyme immobilisation techniques holds promise for addressing societal challenges such as sustainable production, environmental protection and healthcare. By enabling more efficient biocatalytic processes, this research contributes to reducing industrial waste, minimizing energy consumption and enhancing access to pharmaceuticals and bio-based products. Moreover, the development of eco-friendly manufacturing practices through biocatalysis aligns with global efforts towards sustainability and mitigating climate change. The widespread adoption of these technologies can foster a more environmentally conscious society while stimulating economic growth and innovation in biotechnology and related industries.

Originality/value

This study offers a pioneering approximation method using the independent polynomials of the complete bipartite graph to investigate enzyme reaction kinetics. The comprehensive validation of this method through comparison with established solution techniques ensures its reliability and accuracy. The findings hold promise for advancing the field of biocatalysts and provide valuable insights for designing efficient enzyme reactors.

Article
Publication date: 3 June 2024

Ankita Bisht and Sanjalee Maheshwari

The purpose of this article is to present a mathematical model for the fully developed flow of Bi-viscous Bingham nanofluid through a uniform-width anisotropic porous channel. The…

29

Abstract

Purpose

The purpose of this article is to present a mathematical model for the fully developed flow of Bi-viscous Bingham nanofluid through a uniform-width anisotropic porous channel. The model incorporates a generalized Brinkman-Darcy formulation for the porous layers while considering the motion of nanoparticles influenced by both Brownian diffusion and thermophoresis effects.

Design/methodology/approach

The similarity transformations derived through Lie group analysis are used to reduce the system from nonlinear partial differential equations to nonlinear ordinary differential equations. The finite difference method-based numerical routine bvp4c is employed to collect and graphically present the outcomes for velocity, temperature, and nanoparticle concentration profiles. The flow pattern is analyzed through streamlined plots. Furthermore, skin friction, heat, and mass transmission rates are investigated and presented via line plots.

Findings

It is observed that in anisotropic porous media, the temperature profile is stronger than in isotropic porous media. The thermal anisotropic parameter enhances the concentration profile while reducing the temperature.

Practical implications

Anisotropy arises in various industrial and natural systems due to factors such as preferred orientation or asymmetric geometry of fibers or grains. Hence, this study has applications in oil extraction processes, certain fibrous and biological materials, geological formations, and dendritic zones formed during the solidification of binary alloys.

Originality/value

1. The permeability and thermal conductivity are not constant; instead, they have different values in the x and y directions. 2. This study considers the dependency of thermophoresis on nanoparticle volume fraction and Brownian diffusion on the temperature in both the fluid flow equations and boundary conditions. 3. A novel similarity transformation is derived using Lie group analysis instead of using an existing transformation already available in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 September 2024

Razi Khan

Analyzing and reducing entropy generation is useful for enhancing the thermodynamic performance of engineering systems. This study aims to explore how polymers and nanoparticles…

Abstract

Purpose

Analyzing and reducing entropy generation is useful for enhancing the thermodynamic performance of engineering systems. This study aims to explore how polymers and nanoparticles in the presence of Lorentz forces influence the fluid behavior and heat transfer characteristics to lessen energy loss and entropy generation.

Design/methodology/approach

The dispersion model is initially used to examine the behavior of polymer additives over a magnetized surface. The governing system of partial differential equations (PDEs) is subsequently reduced through the utilization of similarity transformation techniques. Entropy analysis is primarily performed through the implementation of numerical computations on a non-Newtonian polymeric FENE-P model.

Findings

The numerical simulations conducted in the presence of Lorentz forces provide significant insights into the consequences of adding polymers to the base fluid. The findings suggest that such an approach minimizes entropy in the flow region. Through the utilization of polymer-MHD (magnetohydrodynamic) interactions, it is feasible to reduce energy loss and improve the efficiency of the system.

Originality/value

This study’s primary motivation and novelty lie in examining the significance of polymer additives as agents that reduce entropy generation on a magnetic surface. The author looks at how nanofluids affect the development of entropy and the loss of irreversibility. To do this, the author uses the Lorentz force, the Soret effect and the Dufour effect to minimize entropy. The findings contribute to fluid mechanics and thermodynamics by providing valuable insights for engineering systems to increase energy efficiency and conserve resources.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2024

Ilango M.S. and Lakshminarayana Pallavarapu

The purpose of this study is to examine the melting heat transfer of magnetohydrodynamics Casson nanofluid flow with viscous dissipation, radiation, and complete slip effects on a…

Abstract

Purpose

The purpose of this study is to examine the melting heat transfer of magnetohydrodynamics Casson nanofluid flow with viscous dissipation, radiation, and complete slip effects on a porous stretching sheet. Since, the study of melting heat transfer has mesmerized the attention of scientists and engineers in the sense of its enormous uses in industrial processes, solidification, casting, and technology.

Design/methodology/approach

Bejan number and entropy are analyzed. Exploration of irreversibility is modeled using the thermodynamics second law. There is a discussion on thermophoresis and Brownian diffusion along with first-order chemical reactions. Adequate transformations are introduced to convert the controlling partial differential equations to ordinary differential equations. The three-phase Lobatto solvers (bvp5c) are used to obtain numerical solutions of the transmitted equations.

Findings

The effects of various factors on temperature, velocity, concentration, Bejan number and entropy rate are shown graphically. The velocity field is enhanced by increasing the melting heat parameter, and it declines for growing magnetic parameters. Temperature is decreased for increasing parametric values of melting heat, porous and Casson parameters. A 7% decrease in the Sherwood distribution is seen when we increase the Brownian motion parameter from 0.1 to 0.2. Similarly, an 11% decrement is found in the Nusselt distribution for increasing the Brinkman number from 0.5 to 1.

Originality/value

Entropy and Bejan number experience dual tendencies whenever the melting heat parameter increases. Nusselt number and skin friction experience the opposite behavior for the increasing values of melting parameter. Sherwood number decreases for the increasing values of melting parameter. The velocity profile is directly related to the melting parameter and inversely related to porous and magnetic parameters. Thermophoresis and Brinkman parameters boost the temperature profile and it is controlled by melting and porous parameters. Some notable fields where the present study is used inevitably are silicon wafering, geothermal energy recovery and semiconductor manufacturing.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 August 2024

S. Sridhar and M. Muthtamilselvan

This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.

Abstract

Purpose

This paper aims to present a study on stability analysis of Jeffrey fluids in the presence of emergent chemical gradients within microbial systems of anisotropic porous media.

Design/methodology/approach

This study uses an effective method that combines non-dimensionalization, normal mode analysis and linear stability analysis to examine the stability of Jeffrey fluids in the presence of emergent chemical gradients inside microbial systems in anisotropic porous media. The study focuses on determining critical values and understanding how temperature gradients, concentration gradients and chemical reactions influence the onset of bioconvection patterns. Mathematical transformations and analytical approaches are used to investigate the system’s complicated dynamics and the interaction of numerous characteristics that influence stability.

Findings

The analysis is performed using the Jeffrey-Darcy type and Boussinesq estimation. The process involves using non-dimensionalization, using the normal mode approach and conducting linear stability analysis to convert the field equations into ordinary differential equations. The conventional thermal Rayleigh Darcy number RDa,c is derived as a comprehensive function of various parameters, and it remains unaffected by the bio convection Lewis number Łe. Indeed, elevating the values of ζ and γ in the interval of 0 to 1 has been noted to expedite the formation of bioconvection patterns while concurrently expanding the dimensions of convective cells. The purpose of this investigation is to learn how the temperature gradient affects the concentration gradient and, in turn, the stability and initiation of bioconvection by taking the Soret effect into the equation. The results provide insightful understandings of the intricate dynamics of fluid systems affected by chemical and biological elements, providing possibilities for possible industrial and biological process applications. The findings illustrate that augmenting both microbe concentration and the bioconvection Péclet number results in an unstable system. In this study, the experimental Rayleigh number RDa,c was determined to be 4π2at the critical wave number ( δcˇ) of π.

Originality/value

The study’s novelty originated from its investigation of a novel and complicated system incorporating Jeffrey fluids, emergent chemical gradients and anisotropic porous media, as well as the use of mathematical and analytical approaches to explore the system’s stability and dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 July 2024

Zhixu Zhu, Hualiang Zhang, Guanghui Liu and Dongyang Zhang

This paper aims to propose a hybrid force/position controller based on the adaptive variable impedance.

Abstract

Purpose

This paper aims to propose a hybrid force/position controller based on the adaptive variable impedance.

Design/methodology/approach

First, the working space is divided into a force control subspace and a position subspace, the force control subspace adopts the position impedance control strategy. At the same time, the contact force model between the robot and the surface is analyzed in this space. Second, based on the traditional position impedance, the model reference adaptive control is introduced to provide an accurate reference position for the impedance controller. Then, the BP neural network is used to adjust the impedance parameters online.

Findings

The experimental results show that compared with the traditional PI control method, the proposed method has a higher flexibility, the dynamic response accommodation time is reduced by 7.688 s and the steady-state error is reduced by 30.531%. The overshoot of the contact force between the end of robot and the workpiece is reduced by 34.325% comparing with the fixed impedance control method.

Practical implications

The proposed control method compares with a hybrid force/position based on PI control method and a position fixed impedance control method by simulation and experiment.

Originality/value

The adaptive variable impedance control method improves accuracy of force tracking and solves the problem of the large surfaces with robot grinding often over-polished at the protrusion and under-polished at the concave.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 3 February 2023

M. Iadh Ayari and Sabri T.M. Thabet

This paper aims to study qualitative properties and approximate solutions of a thermostat dynamics system with three-point boundary value conditions involving a nonsingular kernel…

Abstract

Purpose

This paper aims to study qualitative properties and approximate solutions of a thermostat dynamics system with three-point boundary value conditions involving a nonsingular kernel operator which is called Atangana-Baleanu-Caputo (ABC) derivative for the first time. The results of the existence and uniqueness of the solution for such a system are investigated with minimum hypotheses by employing Banach and Schauder's fixed point theorems. Furthermore, Ulam-Hyers (UH) stability, Ulam-Hyers-Rassias UHR stability and their generalizations are discussed by using some topics concerning the nonlinear functional analysis. An efficiency of Adomian decomposition method (ADM) is established in order to estimate approximate solutions of our problem and convergence theorem is proved. Finally, four examples are exhibited to illustrate the validity of the theoretical and numerical results.

Design/methodology/approach

This paper considered theoretical and numerical methodologies.

Findings

This paper contains the following findings: (1) Thermostat fractional dynamics system is studied under ABC operator. (2) Qualitative properties such as existence, uniqueness and Ulam–Hyers–Rassias stability are established by fixed point theorems and nonlinear analysis topics. (3) Approximate solution of the problem is investigated by Adomain decomposition method. (4) Convergence analysis of ADM is proved. (5) Examples are provided to illustrate theoretical and numerical results. (6) Numerical results are compared with exact solution in tables and figures.

Originality/value

The novelty and contributions of this paper is to use a nonsingular kernel operator for the first time in order to study the qualitative properties and approximate solution of a thermostat dynamics system.

Article
Publication date: 10 June 2024

Xinghong Wang, Qiang Bian, Xinhua Gao, Chunjiang Zhao, Minghui Liu, Xinghui Xie and Bowen Jiao

The purpose of this paper is to establish a dynamic model considering the actual operating conditions of the train and to study the dynamic performance and vibration…

Abstract

Purpose

The purpose of this paper is to establish a dynamic model considering the actual operating conditions of the train and to study the dynamic performance and vibration characteristics of axle box bearings under different operating conditions.

Design/methodology/approach

In this paper, based on the internal contact characteristics of double-row tapered roller bearings, a dynamic model considering the actual operating conditions of the train is established. The correctness of the model is verified by the vibration test of the bearing. Comparative analysis was conducted on the effects of axial force, radial force and rotational speed on the angular velocity of the cage, slip rate and vibration acceleration level of the inner ring.

Findings

As the force increases, the slip rate of the cages on both sides decreases, and the vibration acceleration level of the inner ring increases. With the increase of rotational speed, the cage slip rate of the axle box bearing increases and the vibration acceleration level of the inner ring increases.

Originality/value

A dynamic model is established considering the actual operating conditions, and the dynamic performance and vibration characteristics of the axle box bearing under different operating conditions are analyzed by numerical method. The research content can provide reference for the parameter design of high-speed railway bearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0085/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 September 2024

GuoLong Zhang

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of…

Abstract

Purpose

This study investigates the coupling effects between temperature, permeability and stress fields during the development of geothermal reservoirs, comparing the impacts of inter-well pressure differentials, reservoir temperature and heat extraction fluid on geothermal extraction.

Design/methodology/approach

This study employs theoretical analysis and numerical simulation to explore the coupling mechanisms of temperature, permeability and stress fields in a geothermal reservoir using a thermal-hydrological-mechanical (THM) three-field coupling model.

Findings

The results reveal that the pressure differential between wells significantly impacts geothermal extraction capacity, with SC-CO2 achieving 1.83 times the capacity of water. Increasing the aperture of hydraulic and natural fractures effectively enhances geothermal production, with a notable enhancement for natural fractures.

Originality/value

The research provides a critical theoretical foundation for understanding THM coupling mechanisms in geothermal extraction, supporting the optimization of geothermal resource development and utilization.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 August 2024

Ersin Bahar and Gurhan Gurarslan

The purpose of this study is to introduce a new numerical scheme with no stability condition and high-order accuracy for the solution of two-dimensional coupled groundwater flow…

Abstract

Purpose

The purpose of this study is to introduce a new numerical scheme with no stability condition and high-order accuracy for the solution of two-dimensional coupled groundwater flow and transport simulation problems with regular and irregular geometries and compare the results with widely acceptable programs such as Modular Three-Dimensional Finite-Difference Ground-Water Flow Model (MODFLOW) and Modular Three-Dimensional Multispecies Transport Model (MT3DMS).

Design/methodology/approach

The newly proposed numerical scheme is based on the method of lines (MOL) approach and uses high-order approximations both in space and time. Quintic B-spline (QBS) functions are used in space to transform partial differential equations, representing the relevant physical phenomena in the system of ordinary differential equations. Then this system is solved with the DOPRI5 algorithm that requires no stability condition. The obtained results are compared with the results of the MODFLOW and MT3DMS programs to verify the accuracy of the proposed scheme.

Findings

The results indicate that the proposed numerical scheme can successfully simulate the two-dimensional coupled groundwater flow and transport problems with complex geometry and parameter structures. All the results are in good agreement with the reference solutions.

Originality/value

To the best of the authors' knowledge, the QBS-DOPRI5 method is used for the first time for solving two-dimensional coupled groundwater flow and transport problems with complex geometries and can be extended to high-dimensional problems. In the future, considering the success of the proposed numerical scheme, it can be used successfully for the identification of groundwater contaminant source characteristics.

Details

Engineering Computations, vol. 41 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 956