Search results

1 – 10 of 37
Article
Publication date: 2 February 2022

Munir Ahmed, Muhammad Shakaib and Mubashir Ali Siddiqui

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different…

Abstract

Purpose

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different locations of the combustion chamber. This study aims to quantify NOx formed inside the combustion chamber using two fuels, a conventional diesel (n-heptane) and a biodiesel (methyl oleate).

Design/methodology/approach

This research uses a computational fluid dynamics simulation of chemically reacting fluid flow to quantify and compare oxides of nitrogen (NOx) in a compression ignition (CI) engine. The study expends species transport model of ANSYS FLUENT. The simulation model has provided the temperature profile inside the combustion chamber, which is subsequently used to calculate NOx using the NOx model. The simulation uses a single component hydrocarbon and oxygenated hydrocarbon to represent fuels; for instance, it uses n-heptane (C7H16) for diesel and methyl-oleate (C19H36O2) for biodiesel. A stoichiometric air–fuel mixture is used for both fuels. The simulation runs a single cylinder CI engine of 650 cm3 swept volume with inlet and exhaust valves closed.

Findings

The pattern for variation of velocity, an important flow parameter, which affects combustion and subsequently oxides of nitrogen (NOx) formation at different piston locations, is similar for the two fuels. The variations of in-cylinder temperature and NOx formation with crank angles have similar patterns for the fuels, diesel and biodiesel. However, the numerical values of in-cylinder temperature and mass fraction of NOx are different. The volume averaged static peak temperatures are 1,013 K in case of diesel and 1,121 K in case of biodiesel, while the mass averaged mass fractions of NOx are 15 ppm for diesel and 141 ppm for biodiesel. The temperature rise after combustion is more in case of biodiesel, which augments the oxides of nitrogen formation. A new parameter, relative mass fraction of NOx, yields 28% lower value for biodiesel than for diesel.

Originality/value

This work uses a new concept of simulating simple chemical reacting system model to quantify oxides of NOx using single component fuels. Simplification has captured required fluid flow data to analyse NOx emission from CI engine while reducing computational time and expensive experimental tests.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Book part
Publication date: 19 March 2024

Kevin M. Esterling and Cesunica E. Ivey

In this chapter, the authors envision a new framework for technology-enabled local engagement. This framework would exploit web-based collaboration technology in order to create…

Abstract

In this chapter, the authors envision a new framework for technology-enabled local engagement. This framework would exploit web-based collaboration technology in order to create local engagement panels that represent a cross section of ordinary residents. For concreteness, the authors illustrate the framework in a proposed study called “Clearing the Air” would enable residents in the areas of Southern California that are most impacted by the logistics industry to have substantive and constructive opportunities to engage local officials on the complex economic and environmental matters related to logistics and emissions in the Southern California region. The authors propose methods to evaluate best practices in the use of collaboration technology, in particular, to learn whether the technology enables and empowers the engagement panels to participate in air quality governance at a high level and helps local officials better understand the considered opinions of residents on these important matters. If successful, this framework would integrate the policy views of individual residents alongside those of organized stakeholders, experts, and agency officials in the policy process.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

Article
Publication date: 14 November 2023

Rodolfo Canelón, Christian Carrasco and Felipe Rivera

It is well known in the mining industry that the increase in failures and breakdowns is due mainly to a poor maintenance policy for the equipment, in addition to the difficult…

Abstract

Purpose

It is well known in the mining industry that the increase in failures and breakdowns is due mainly to a poor maintenance policy for the equipment, in addition to the difficult access that specialized personnel have to combat the breakdown, which translates into more machine downtime. For this reason, this study aims to propose a remote assistance model for diagnosing and repairing critical breakdowns in mining industry trucks using augmented reality techniques and data analytics with a quality approach that considerably reduces response times, thus optimizing human resources.

Design/methodology/approach

In this work, the six-phase CRIPS-DM methodology is used. Initially, the problem of fault diagnosis in trucks used in the extraction of material in the mining industry is addressed. The authors then propose a model under study that seeks a real-time connection between a service technician attending the truck at the mine site and a specialist located at a remote location, considering the data transmission requirements and the machine's characterization.

Findings

It is considered that the theoretical results obtained in the development of this study are satisfactory from the business point of view since, in the first instance, it fulfills specific objectives related to the telecare process. On the other hand, from the data mining point of view, the results manage to comply with the theoretical aspects of the establishment of failure prediction models through the application of the CRISP-DM methodology. All of the above opens the possibility of developing prediction models through machine learning and establishing the best model for the objective of failure prediction.

Originality/value

The original contribution of this work is the proposal of the design of a remote assistance model for diagnosing and repairing critical failures in the mining industry, considering augmented reality and data analytics. Furthermore, the integration of remote assistance, the characterization of the CAEX, their maintenance information and the failure prediction models allow the establishment of a quality-based model since the database with which the learning machine will work is constantly updated.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 12 December 2023

Robert Bogue

The purpose of this paper is to provide a detailed insight into the global military robot industry with an emphasis on products and their applications.

Abstract

Purpose

The purpose of this paper is to provide a detailed insight into the global military robot industry with an emphasis on products and their applications.

Design/methodology/approach

Following an introduction which includes a brief historical account, this provides an industry overview, including various market dimensions and a discussion of the geopolitical and technological factors driving market development. The three following sections provide details of land, airborne and marine robots, their capabilities and deployments in recent conflicts. Finally, brief conclusions are drawn.

Findings

Military robots which operate on land, in the air and at sea constitute a multi-billion dollar industry which is growing rapidly. It is being driven by geopolitical tensions, notably the military-technology arms race between China and the USA and the conflict in Ukraine, together with technological progress, particularly in AI. Many robots possess multi-functional capabilities, and the leading application is presently intelligence, surveillance and reconnaissance. An increasing number of heavily armed robots are being developed, and AI has the potential to impart these with the capacity to deliver lethal force without human intervention. Although heavily criticised in some quarters, this capability has probably already been deployed on the battlefield. With ever-growing military budgets, escalating political tensions and technological innovations, robots will play an increasingly significant role in future conflicts.

Originality/value

This provides a detail account of military robots and their role in modern warfare.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Case study
Publication date: 27 February 2024

Yuejun Tang

The widespread family businesses play an important role in the national economy of developed countries in Europe and North America, or of developing countries in East Asia…

Abstract

The widespread family businesses play an important role in the national economy of developed countries in Europe and North America, or of developing countries in East Asia. However, family business succession is a worldwide difficult problem. The innovative family business succession practices of Robert Bosch GmbH, the German family company which has a history of 130 years (1886-2016), basically follow the trend of evolving from family businesses to social enterprises after further socialization. However, it has its own innovation and uniqueness which is worthy of reference by Chinese family businesses.

Details

FUDAN, vol. no.
Type: Case Study
ISSN: 2632-7635

Article
Publication date: 14 March 2024

Sina Tarighi

The purpose of this study is to define and develop a new technological development path for latecomer firms in developing countries.

Abstract

Purpose

The purpose of this study is to define and develop a new technological development path for latecomer firms in developing countries.

Design/methodology/approach

An analytical framework for development based on the technological capability (TC) dimensions is developed and examined in the drilling sector. Since the process of TC accumulation is dynamic, the case study approach is the best method for an exploratory theory-building study. Through a comparative case study of two Iranian drilling contractors, a new path for the technological development of latecomer oil service companies is proposed.

Findings

The study of two cases indicates that despite having similar scope and levels of TC, one of them demonstrated superior technical performance. To address this difference, the concept of operational efficiency is introduced which is considered the outcome of increasing the depth of TC.

Practical implications

Although upgrading the level of technological and innovation capability is an important path for technological development, latecomers that suffer from various disadvantages can perform their routine activities with superior performance and develop through their basic operational/production capabilities. Also, specialized indicators designed for assessing the level and depth of TC in the drilling industry have important insights for evaluating the technological and competitive position of oil service companies.

Originality/value

To the best of the author’s knowledge, this study takes the first step in defining and elaborating on the concept of depth of TC as a development path for latecomers. It also introduced a novel approach to the global operational/production efficiency frontier as a target for their catch-up.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 12 December 2023

M.A. Xianglin, Haochen Cai, Qiming Yang, Gang Wang and Kun Mao

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the…

Abstract

Purpose

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the newly developed assembly workstation.

Design/methodology/approach

First, spot check the trial production impellers and obtain three indexes that reflect the assembly quality of the impellers. Then, analyze the parameters that affect the assembly quality of the impeller using grey relational analysis (GRA), establish a model for the assembly quality of the range hood impeller based on the generalized grey relational degree and identify the main parameters. After that, analyze the transmission structure of automation assembly workstation, identify the reasons that affect parameters and propose improvement plans. Finally, a trial production is conducted on the automation assembly workstation after adopting the improved plan to verify the quality model of impeller automation assembly.

Findings

The research shows that compared to manual assembly, the automation assembly quality of the impeller using GRA model has been improved, shortening the debugging cycle of the newly developed assembly workstation.

Practical implications

The newly developed automation equipment will have some problems in the trial production stage, which often rely on the experience of engineers for debugging. In this paper, the automation assembly quality model of range hood impeller based on GRA is established, which can not only ensure the quality of finished impeller but also shorten the debugging cycle of the equipment. In addition, GRA can be widely used in the commissioning of other automation equipment.

Originality/value

This study has developed a set of impeller automation assembly workstation. The debugging method in the trial production stage is beneficial to shorten the trial production time and improve the economic benefits.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Abstract

Details

Understanding Children's Informal Learning: Appreciating Everyday Learners
Type: Book
ISBN: 978-1-80117-274-5

Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2023

Robert Bogue

The purpose of this paper is to provide details of recent developments in agricultural robots with an emphasis of those that address labour shortages and environmental issues.

Abstract

Purpose

The purpose of this paper is to provide details of recent developments in agricultural robots with an emphasis of those that address labour shortages and environmental issues.

Design/methodology/approach

Following an introduction which highlights some of the challenges facing the agricultural industry, this discusses recent robotic agricultural vehicle developments and the enabling technologies. It then provides examples of terrestrial and airborne robots employed in precision agricultural practices. Finally, brief conclusions are drawn.

Findings

Traditional, labour-intensive and environmentally harmful agricultural practices are not sustainable in the long term, and if food supply is to meet future demand, radical changes will be required. Exploiting recent advances in artificial intelligence (AI), agricultural equipment manufacturers are developing robotic vehicles in response to labour shortages. Precision agricultural practices will mitigate many of the detrimental environmental impacts and can also reduce the reliance on manpower. Weeding robots which reduce or eliminate the use of herbicides have been commercialised by a growing number of companies and again exploit AI techniques. Drones equipped with imaging device are playing an increasingly important role by characterising agricultural and crop conditions, thereby allowing highly targeted agrochemical application.

Originality/value

This illustrates how the agricultural industry is adopting robotic technology in response to the need to increased productivity while mitigating the problems of shortages of labour and environmental degradation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 37