Search results

1 – 4 of 4
Article
Publication date: 19 May 2021

Batuhan Özakın, Bilal Çolak and Naci Kurgan

The last stage of the cold rolling process is skin-pass rolling and one of its most significant goals is to obtain appropriate topography on the surface of the sheet steel used…

Abstract

Purpose

The last stage of the cold rolling process is skin-pass rolling and one of its most significant goals is to obtain appropriate topography on the surface of the sheet steel used extensively such as in automotive industry. The purpose of this paper is to investigate the effect of thickness change and various reduction ratios on roughness transfer of DC04 grade sheet material.

Design/methodology/approach

DC04 grade sheet materials with different reduction ratios and several thicknesses were subjected to skin-pass rolling process in the rolling equipment with a two-high roll. Some roughness parameters were determined as a result of roughness measurements from the surfaces of roughened sheet materials.

Findings

While the roughness transfer is higher in 1-mm thick material in reduction ratios up to 430 micrometers; in reduction ratios above 430 micrometers, it is higher for 1.5-mm thick materials. As the reduction ratio increases in DC04 grade sheet materials, the homogeneity of the roughness distribution in 1-mm thickness sheet material deteriorates, while the roughness distribution in 1.5-mm thickness sheet material is more homogeneous.

Originality/value

This paper demonstrates how material thickness and reduction ratio affect the roughness transfer in skin-pass rolling. The results obtained can be used by optimizing in manufacturing processes.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 June 2023

Pawan Bishnoi and Pankaj Chandna

This present research aims to identify the optimum process parameters for enhancing geometric accuracy in single-point incremental forming of aviation-grade superalloy 625.

Abstract

Purpose

This present research aims to identify the optimum process parameters for enhancing geometric accuracy in single-point incremental forming of aviation-grade superalloy 625.

Design/methodology/approach

The geometric accuracy has been measured in terms of half-cone-angle, concentricity, roundness and wall-straightness errors. The Taguchi Orthogonal-Array L9 with desirability-function-analysis has been used to achieve improved accuracy.

Findings

To achieve maximum geometric accuracy, the optimum setting having a tooltip diameter of 10 mm, a step-size of 0.2 mm and a tool rotation speed (TRS) of 900 RPM has been derived. With this setting, the half-cone-angle accuracy increases by 42.96%, the concentricity errors decrease by 47.36%, the roundness errors decline by 45.2% and the wall straightness errors reduce by 1.06%.

Practical implications

Superalloy 625 is a widespread nickel-based alloy, finding enormous applications in aerospace, marine and chemical industries.

Originality/value

It has been recommended to increase TRS, reduce step-size and use moderate size tooltip diameter to enhance geometric accuracy. Step-size has been found to be the governing parameter among all the parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 May 2020

Raman Kumar, Jasgurpreet Singh Chohan, Rohit Goyal and Piyush Chauhan

Resistance spot welding (RSW) is an essential process in the automobile sector to join the components. The steel is the principal material utilized in car generation because of…

633

Abstract

Purpose

Resistance spot welding (RSW) is an essential process in the automobile sector to join the components. The steel is the principal material utilized in car generation because of its high obstruction against erosion, toughness, ease of support and its recuperation potential. Due to this, it was planned to study the mechanical properties, hardness and microstructure characteristics of RSW of Stainless steel 304.

Design/methodology/approach

In the present research, RSW of 304 stainless steel plates with 1 mm thickness and effect of current intensity, welding time, electrode pressure and holding time on nugget diameter, tensile strength microhardness and microstructure of the joints was investigated. The specimens were prepared according to the dimensions of 30 × 100 mm with 30 mm overlaps joint through the RSW machine. The tensile test of the specimen was carried out on a universal testing machine and microhardness of specimens measured using Vickers’s hardness tester. Taguchi L16 orthogonal array was used to scrutinize the significant parameters for each output.

Findings

It has been observed that the tensile strength of the specimen is affected by the current intensity and nugget diameter, and the weld time has a significant effect on the tensile strength. Microhardness is highly influenced by electrode pressure and holding time, as the increase in both these parameters resulted in the increase of microhardness. This is due to rapid cooling, which is done by the cooling water flowing through the copper electrodes.

Originality/value

This study was carried out using a copper electrode with a flat face with selected parameters and response factors. The study can be useful for researchers working on optimization of welding parameters on stainless steel.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 December 2001

John Mortimer

Hydroforming offers the potential to reduce parts count and significantly increase structural strength and stiffness, as demonstrated by the use of the process to produce…

1352

Abstract

Hydroforming offers the potential to reduce parts count and significantly increase structural strength and stiffness, as demonstrated by the use of the process to produce A‐pillars and windshield headers for the BMW 3‐series.

Details

Assembly Automation, vol. 21 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 4 of 4