Search results

1 – 10 of 13
Open Access
Article
Publication date: 10 July 2024

Tianyun Shi, Zhoulong Wang, Jia You, Pengyue Guo, Lili Jiang, Huijin Fu and Xu Gao

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is…

Abstract

Purpose

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is complex, and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters, perimeter intrusion and external environmental hazards. The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.

Design/methodology/approach

In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments, the research status is elaborated, and the latest research progress and achievements of the team are introduced. This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological, perimeter and external environmental situation perception methods for high-speed rail operation.

Findings

Based on the technical route of “situational awareness evaluation warning active control,” a technical system for monitoring the safety of high-speed train operation environments has been formed. Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters, perimeter intrusion and the external environment on high-speed rail safety. These works strongly support the improvement of China’s railway environmental safety guarantee technology.

Originality/value

With the operation of CR450 high-speed trains with a speed of 400 km per hour and the application of high-speed train autonomous driving technology in the future, new and higher requirements have been put forward for the safety of high-speed rail operation environments. The following five aspects of work are urgently needed: (1) Research the single factor disaster mechanism of wind, rain, snow, lightning, etc. for high-speed railways with a speed of 400 kms per hour, and based on this, study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment, revealing the coupling disaster mechanism of multiple influencing factors; (2) Research covers multi-source data fusion methods and associated features such as disaster monitoring data, meteorological information, route characteristics and terrain and landforms, studying the spatio-temporal evolution laws of meteorological disasters, perimeter intrusions and external environmental hazards; (3) In terms of meteorological disaster situation awareness, research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines; (4) In terms of perimeter intrusion, research a multi-modal fusion perception method for typical scenarios of high-speed rail operation in all time, all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and (5) In terms of external environment, based on the existing general network framework for change detection, we will carry out research on change detection and algorithms in the surrounding environment of high-speed rail.

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 July 2024

Huijie Jin, Suihan Sui and Changyin Gao

Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage…

Abstract

Purpose

Torque is one of the main parameters reflecting the operation status and detection of a mechanical rotation system. The use of quartz pillar to design torque sensors has advantage over the use of quartz disk, but research into the torsional effect of quartz pillar is rare. This paper aims to investigate a novel type of torque sensor based on piezoelectric torsional effect.

Design/methodology/approach

Based on the theory of anisotropic elasticity and the Maxwell electromagnetism, the torsion stress and distribution of surface charge of a rectangular quartz pillar are calculated. Using finite element analysis, the polarized electric field of the piezoelectric pillar is solved. According to the theoretical calculation of torsional effect of piezoelectric quartz pillar, detection electrodes are mounted on the surface of the quartz pillar and a new type of torque sensor is designed.

Findings

The calibration experimental results show that the bound charges are proportional to the torque applied, and the torque sensor has fully reached the dynamometer standard.

Originality/value

This paper shows that the torsional effect of the developed piezoelectric quartz pillar can be used to create a new type of piezoelectric torque sensor.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 9 September 2024

Jeremy Bernier, Elisabeth R. Gee, Yuchan (Blanche) Gao, Luis E. Pérez Cortés and Taylor M. Kessner

The purpose of this paper reporting an exploratory pilot study is to examine how participant engagement in design thinking varies when playing and fixing (playfixing) three…

Abstract

Purpose

The purpose of this paper reporting an exploratory pilot study is to examine how participant engagement in design thinking varies when playing and fixing (playfixing) three partially complete games (broken games).

Design/methodology/approach

The data for this study consist of transcripts of five playfixing sessions with a total of 16 participants. Each session focused on one of three games. The authors used Winn’s (2009) design-play-experience framework to analyze features of each game that might relate to differences in design thinking. Next, the authors coded each playfixing session’s transcript to identify patterns of design thinking. Finally, these findings were used to make conjectures about how design features and flaws might encourage particular forms of design thinking.

Findings

The findings indicate how playfixing tabletop games with varied levels of complexity, playability and rule definition lead to different patterns of design thinking.

Originality/value

This is a first step toward understanding how the constraints associated with various elements of broken games might direct participants toward desired modes of design thinking and more broadly, contributes to the literature on the educational uses of game making.

Details

Information and Learning Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5348

Keywords

Open Access
Article
Publication date: 28 August 2024

Fabian Kranert, Moritz Hinkelmann, Roland Lachmayer, Jörg Neumann and Dietmar Kracht

This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components…

Abstract

Purpose

This study aims to extend the known design guidelines for the polymer-based fused filament fabrication (FFF) 3D printing process with the focus on function-integrated components, specifically optomechanical parts. The potential of this approach is demonstrated by manufacturing function-integrated optomechanics for a low-power solid-state laser system.

Design/methodology/approach

For the production of function-integrated additively manufactured optomechanics using the FFF process, essential components and subsystems have been identified for which no design guidelines are available. This includes guidelines for integrating elements, particularly optics, into a polymer structure as well as guidelines for printing functional threads and ball joints. Based on these results, combined with prior research, a function-integrated low-power solid-state laser optomechanic was fabricated via the FFF process, using a commercial 3D printer of the type Ultimaker 3. The laser system's performance was assessed and compared to a reference system that employed commercial optomechanics, additionally confirming the design guidelines derived from the study.

Findings

Based on the design goal of function integration, the existing design guidelines for the FFF process are systematically extended. This success is demonstrated by the fabrication of an integrated optomechanic for a solid-state laser system.

Practical implications

Based on these results, scientists and engineers will be able to use the FFF process more extensively and benefit from the possibilities of function-integrated manufacturing.

Originality/value

Extensive research has been published on additive manufacturing of optomechanics. However, this research often emphasizes only cost reduction and short-term availability of components by reprinting existing parts. This paper aims to explore the capabilities of additive manufacturing in the production of function-integrated components to reduce the number of individual parts required, thereby decreasing the workload for system assembly and leading to an innovative production process for optical systems. Consequently, where needed, it provides new design guidelines or extends existing ones and verifies them by means of test series.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 February 2024

Anna-Leena Kurki, Elina Weiste, Hanna Toiviainen, Sari Käpykangas and Hilkka Ylisassi

The involvement of clients in service encounters and service development has become a central principle for contemporary health and social care organizations. However, in…

Abstract

Purpose

The involvement of clients in service encounters and service development has become a central principle for contemporary health and social care organizations. However, in day-to-day work settings, the shift toward client involvement is still in progress. We examined how health and social care professionals, together with clients and managers, co-develop their conceptions of client involvement and search for practical ways in which to implement these in organizational service processes.

Design/methodology/approach

The empirical case of this study was a developmental intervention, the client involvement workshop, conducted in a Finnish municipal social and welfare center. The cultural-historical activity theory (CHAT) framework was used to analyze the development of client involvement ideas and the modes of interaction during the intervention.

Findings

Analysis of the collective discussion revealed that the conceptions of client involvement developed through two interconnected object-orientations: Enabling client involvement in service encounters and promoting client involvement in the service system. The predominant mode of interaction in the collective discussion was that of “coordination.” The clients' perspective and contributions were central aspects in the turning points from coordination to cooperation; professionals crossed organizational boundaries, and together with clients, constructed a new client involvement-based object. This suggests that client participation plays an important role in the development of services.

Originality/value

The CHAT-based examination of the modes of interaction clarifies the potential of co-developing client-involvement-based services and highlights the importance of clients' participation in co-development.

Details

Journal of Health Organization and Management, vol. 38 no. 9
Type: Research Article
ISSN: 1477-7266

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 September 2022

Huanchao Wu

The digital media recording and broadcasting classroom using Internet real-time intelligent image positioning and opinion monitoring in communication teaching is researched and…

Abstract

Purpose

The digital media recording and broadcasting classroom using Internet real-time intelligent image positioning and opinion monitoring in communication teaching is researched and analyzed.

Design/methodology/approach

First, spatial grid positioning and monitoring and image intelligent recognition technologies were used to extract and analyze teaching images by mastering Internet of Things (IoT) technology and establishing an intelligent image positioning and opinion monitoring digital media recording and broadcasting system framework. Next, a positioning node algorithm was utilized to measure the image distance, and then a moving node location model under the IoT was established. In addition, a radial basis function (RBF) neural network was used to realize the signal transmission function. The experimental data of the adopted RBF based on the optimization of the adaptive cuckoo search (ACS-RBF) neural network, particle swarm algorithm neural network, and method of least squares optimization were compared and analyzed. In addition, a more efficient RBF neural network was adopted. Finally, the digital media recording and broadcasting classroom scheme of real-time intelligent image positioning and opinion monitoring was designed. In addition, the application environment of digital media actual teacher teaching was detected, and recording and broadcasting pictures were analyzed and researched.

Findings

The actual value, predicted value, and the number of predicted samples of the ACS-RBF model were all better than those of the two other neural networks. According to the analysis and comparison of the sampling optimization Monte Carlo localization (SOMCL), Monte Carlo, and genetic algorithm optimization-based Monte Carlo positioning algorithms, the SOMCL algorithm showed better robustness, and its positioning efficiency was superior to that of the two other algorithms. In addition, the SOMCL algorithm greatly reduced the positioning and monitoring energy consumption.

Originality/value

The application of real-time intelligent image positioning and monitoring technology in actual communication teaching was realized in the study.

Article
Publication date: 2 May 2024

Xi Liang Chen, Zheng Yu Xie, Zhi Qiang Wang and Yi Wen Sun

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the…

Abstract

Purpose

The six-axis force/torque sensor based on a Y-type structure has the advantages of simple structure, small space volume, low cost and wide application prospects. To meet the overall structural stiffness requirements and sensor performance requirements in robot engineering applications, this paper aims to propose a Y-type six-axis force/torque sensor.

Design/methodology/approach

The performance indicators such as each component sensitivities and stiffnesses of the sensor were selected as optimization objectives. The multiobjective optimization equations were established. A multiple quadratic response surface in ANSYS Workbench was modeled by using the central composite design experimental method. The optimal manufacturing structural parameters were obtained by using multiobjective genetic algorithm.

Findings

The sensor was optimized and the simulation results show that the overload resistance of the sensor is 200%F.S., and the axial stiffness, radial stiffness, bending stiffness and torsional stiffness are 14.981 kN/mm, 16.855 kN/mm, 2.0939 kN m/rad and 6.4432 kN m/rad, respectively, which meet the design requirements, and the sensitivities of each component of the optimized sensor have been well increased to be 2.969, 2.762, 4.010, 2.762, 2.653 and 2.760 times as those of the sensor with initial structural parameters. The sensor prototype with optimized parameters was produced. According to the calibration experiment of the sensor, the maximum Class I and II errors and measurement uncertainty of each force/torque component of the sensor are 1.835%F.S., 1.018%F.S. and 1.606%F.S., respectively. All of them are below the required 2%F.S.

Originality/value

Hence, the conclusion can be drawn that the sensor has excellent comprehensive performance and meets the expected practical engineering requirements.

Details

Sensor Review, vol. 44 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 13