Search results

1 – 10 of over 1000
Article
Publication date: 22 March 2024

Yahao Wang, Zhen Li, Yanghong Li and Erbao Dong

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new…

Abstract

Purpose

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new constraint method to improve the performance of the sampling-based planner.

Design/methodology/approach

In this work, a constraint method (TC method) based on the idea of cross-sampling is proposed. This method uses the tangent space in the workspace to approximate the constrained manifold pattern and projects the entire sampling process into the workspace for constraint correction. This method avoids the need for extensive computational work involving multiple iterations of the Jacobi inverse matrix in the configuration space and retains the sampling properties of the sampling-based algorithm.

Findings

Simulation results demonstrate that the performance of the planner when using the TC method under the end-effector constraint surpasses that of other methods. Physical experiments further confirm that the TC-Planner does not cause excessive constraint errors that might lead to task failure. Moreover, field tests conducted on robots underscore the effectiveness of the TC-Planner, and its excellent performance, thereby advancing the autonomy of robots in power-line connection tasks.

Originality/value

This paper proposes a new constraint method combined with the rapid-exploring random trees algorithm to generate collision-free trajectories that satisfy the constraints for a high-dimensional robotic system under end-effector constraints. In a series of simulation and experimental tests, the planner using the TC method under end-effector constraints efficiently performs. Tests on a power distribution live-line operation robot also show that the TC method can greatly aid the robot in completing operation tasks with end-effector constraints. This helps robots to perform tasks with complex end-effector constraints such as grinding and welding more efficiently and autonomously.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 August 2024

Yahao Wang, Yanghong Li, Zhen Li, HaiYang He, Sheng Chen and Erbao Dong

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling…

44

Abstract

Purpose

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling Framework (TC-Framework) that enables the planner to adapt to different end-effector constraints.

Design/methodology/approach

This work presents a standard constraint methodology for representing end-effector constraints as a collection of constraint primitives. The constraint primitives are merged sequentially into the planner, and a unified constraint input interface and constraint module are added to the standard sampling-based planner framework. This approach enables the realization of a generic planner framework that avoids the need to build separate planners for different end-effector constraints.

Findings

Simulation tests have demonstrated that the planner based on TC-framework can adapt to various end-effector constraints. Physical experiments have also confirmed that the framework can be used in real robotic systems to perform autonomous operational tasks. The framework’s strong compatibility with constraints allows for generalization to other tasks without modifying the scheduler, significantly reducing the difficulty of robot deployment in task-diverse scenarios.

Originality/value

This paper proposes a unified constraint method based on constraint primitives to enhance the sampling-based planner. The planner can now adapt to different end effector constraints by opening up the input interface for constraints. A series of simulation tests were conducted to evaluate the TC-Framework-based planner, which demonstrated its ability to adapt to various end-effector constraints. Tests on a physical experimental system show that the framework allows the robot to perform various operational tasks without requiring modifications to the planner. This enhances the value of robots for applications in fields with diverse tasks.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 4 June 2024

Yajing Zheng and Dekun Zhang

The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times. These fluctuations…

Abstract

Purpose

The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times. These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals. The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.

Design/methodology/approach

To achieve this objective, the paper simulates actual train operations, incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station. The Monte Carlo simulation method is adopted to solve this problem. This approach transforms a nonlinear model, which includes constraints from probability distribution functions and is difficult to solve directly, into a linear programming model that is easier to handle. The method then linearly weights two objectives to optimize the solution.

Findings

Through the application of Monte Carlo simulation, the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model. By continuously adjusting the weighting coefficients of the linear objectives, the method is able to optimize the Pareto solution. Notably, this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.

Originality/value

The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times. The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement. Furthermore, the method’s ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.

Article
Publication date: 31 July 2024

Yan Xu, Yaqiu Liu, Xun Liu, Baoyu Wang, Lin Zhang and Zhengwen Nie

The purpose of this study is to address the welding demands within large steel structures by presenting a global spatial motion planning algorithm for a mobile manipulator. This…

Abstract

Purpose

The purpose of this study is to address the welding demands within large steel structures by presenting a global spatial motion planning algorithm for a mobile manipulator. This algorithm is based on an independently developed wall-climbing robot, which comprises a four-wheeled climbing mobile platform and a six-degree-of-freedom robotic manipulator, ensuring high mobility and operational flexibility.

Design/methodology/approach

A convex hull feasible domain constraint is developed for motion planning in the mobile manipulator. For extensive spatial movements, connected sequences of convex polyhedra are established between the composite robot’s initial and target states. The composite robot’s path and obstacle avoidance optimization problem are solved by constraining the control points on B-spline curves. A dynamic spatial constraint rapidlye-xploring random trees-connect (RRTC) motion planning algorithm is proposed for the manipulator, which quickly generates reference paths using spherical spatial constraints at the manipulator’s end, eliminating the need for complex nonconvex constraint modeling.

Findings

Experimental results show that the proposed motion planning algorithm achieves optimal paths that meet task constraints, significantly reducing computation times in task conditions and shortening operation times in non-task conditions.

Originality/value

The algorithm proposed in this paper holds certain application value for the realization of automated welding operations within large steel structures using mobile manipulator.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 June 2024

Jianhua Sun, Suihuai Yu, Jianjie Chu, Wenzhe Cun, Hanyu Wang, Chen Chen, Feilong Li and Yuexin Huang

In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine…

54

Abstract

Purpose

In situations where the crew is reduced, the optimization of crew task allocation and sequencing (CTAS) can significantly enhance the operational efficiency of the man-machine system by rationally distributing workload and minimizing task completion time. Existing related studies exhibit a limited consideration of workload distribution and involve the violation of precedence constraints in the solution process. This study proposes a CTAS method to address these issues.

Design/methodology/approach

The method defines visual, auditory, cognitive and psychomotor (VACP) load balancing objectives and integrates them with workload balancing and minimum task completion time to ensure equitable workload distribution and task execution efficiency, and then a multi-objective optimization model for CTAS is constructed. Subsequently, it designs a population initialization strategy and a repair mechanism to maintain sequence feasibility, and utilizes them to improve the non-dominated sorting genetic algorithm III (NSGA-III) for solving the CTAS model.

Findings

The CTAS method is validated through a numerical example involving a mission with a specific type of armored vehicle. The results demonstrate that the method achieves equitable workload distribution by integrating VACP load balancing and workload balancing. Moreover, the improved NSGA-III maintains sequence feasibility and thus reduces computation time.

Originality/value

The study can achieve equitable workload distribution and enhance the search efficiency of the optimal CTAS scheme. It provides a novel perspective for task planners in objective determination and solution methodologies for CTAS.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 June 2024

Jiaxin Gao, Xin Gu and Xue Yang

Innovation quality is a critical component of enterprise innovation. Prior research primarily focuses on company-level and external policy-level factors that affect innovation…

Abstract

Purpose

Innovation quality is a critical component of enterprise innovation. Prior research primarily focuses on company-level and external policy-level factors that affect innovation quality, while ignoring social-level factors. Based on institutional isomorphism theory, this study examines how the innovation quality of three-dimensional institutional equivalence, which is an important and unique reference group for firms to follow the “law of imitation of close preference”, affects the likelihood of firms' innovation quality.

Design/methodology/approach

This study conducts firm random effects and industry/year fixed effects models using China's listed companies from 2002 to 2021.

Findings

This study finds that compared with the innovation quality of its other industry, community, or network peers, the innovation quality of three-dimensional institutional equivalence has a greater impact on firm innovation quality. Furthermore, technological intensity significantly increases the effect of three-dimensional institutional equivalence on focal company innovation quality, while financing constraints significantly attenuate this effect. Additionally, when there is no institutional equivalent, the innovation quality of network, industry, and community peers has significant positive effects on enterprise innovation quality. Heterogeneity analysis also indicates that, under the conditions of non-state-owned enterprises, a low regional legal environment, or low regional factor market development, three-dimensional institutional equivalence contributes significantly to firm innovation quality.

Research limitations/implications

This study focuses on the effect of three-dimensional institutional equivalence on Chinese enterprises' innovation quality. Nonetheless, research samples from other countries are not considered in this study.

Originality/value

This study explores the impact of three-dimensional institutional equivalence on firm innovation quality within a systematic theoretical framework and incorporates firm attributes into this framework.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 7 May 2024

Andong Liu, Yawen Zhang, Jiayun Fu, Yuankun Yan and Wen-An Zhang

In response to the issue of traditional algorithms often falling into local minima or failing to find feasible solutions in manipulator path planning. The purpose of this paper is…

Abstract

Purpose

In response to the issue of traditional algorithms often falling into local minima or failing to find feasible solutions in manipulator path planning. The purpose of this paper is to propose a 3D artificial moment method (3D-AMM) for obstacle avoidance for the robotic arm's end-effector.

Design/methodology/approach

A new method for constructing temporary attractive points in 3D has been introduced using the vector triple product approach, which generates the attractive moments that attract the end-effector to move toward it. Second, distance weight factorization and spatial projection methods are introduced to improve the solution of repulsive moments in multiobstacle scenarios. Third, a novel motion vector-solving mechanism is proposed to provide nonzero velocity for the end-effector to solve the problem of limiting the solution of the motion vector to a fixed coordinate plane due to dimensionality constraints.

Findings

A comparative analysis was conducted between the proposed algorithm and the existing methods, the improved artificial potential field method and the rapidly-random tree method under identical simulation conditions. The results indicate that the 3D-AMM method successfully plans paths with smoother trajectories and reduces the path length by 20.03% to 36.9%. Additionally, the experimental comparison outcomes affirm the feasibility and effectiveness of this method for obstacle avoidance in industrial scenarios.

Originality/value

This paper proposes a 3D-AMM algorithm for manipulator path planning in Cartesian space with multiple obstacles. This method effectively solves the problem of the artificial potential field method easily falling into local minimum points and the low path planning success rate of the rapidly-exploring random tree method.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 September 2024

Taha Shokatian, Sepehr Ghazinoory, Shohreh Nasri and Hadi Safari

This study aims to develop and apply a process model for prioritizing and selecting basic research projects in developing countries.

Abstract

Purpose

This study aims to develop and apply a process model for prioritizing and selecting basic research projects in developing countries.

Design/methodology/approach

Basic research is mainly funded by governments and since, unlike technological research, it does not have clear business goals, its prioritization is one of the complicated issues in formulating science and technology policy. Adopting a design science research methodology, the authors chose a general framework for project portfolio selection as an appropriate artifact for solving this problem. By customizing it for two specific features of this study, i.e. national scale of the problem and the basic nature of research proposals, the authors developed the proposed framework for solving the problem of priority setting.

Findings

The process for selecting basic research proposals consists of several steps, which can be categorized into eight steps including strategic decisions, preparation, pre-screening, evaluating individual proposals, screening, portfolio selection and monitoring. This study emphasizes the necessity of defining goals that can be evaluated for the national basic research portfolio, as a key strategic decision. Evaluating individual proposals is a peer-review-based process. In contrast, portfolio selection is done through a zero-one linear programming model. The validity of the proposed framework has been confirmed based on the data obtained from the Iran National Science Foundation.

Originality/value

To the best of the authors’ knowledge, in this research, for the first time, a mathematical model for prioritizing basic research at the national level has been presented, which effectively contributes to policymaking regarding the development of an optimum national research portfolio.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 20 March 2023

Kudakwashe Chirambwi

This paper argues for the need to use multiple sources and methods that respond to research challenges presented by new forms of war. There are methodological constraints and…

1090

Abstract

Purpose

This paper argues for the need to use multiple sources and methods that respond to research challenges presented by new forms of war. There are methodological constraints and contention on the superiority given to positivist and interpretivist research designs when doing fieldwork in war situations, hence there is a need to use integrated data generation techniques. The combined effect of severe limitations of movement for both the researcher and researched fragmented data because of polarized views about the causes of the war and unpredictable events that make information hard to come by militate against systematic, organised and robust data generation. The purpose of this paper, therefore, is to make fieldwork researchers understand significant research problems unique to war zones.

Design/methodology/approach

This research was guided by the postmodernist mode of thought which challenges standardised research traditions. Fieldwork experiences in Cabo suggest the need to use the composite strategies that rely on the theoretical foundation of integrative and creative collection of data when doing research in violent settings.

Findings

The fieldwork experiences showed that the standardised, conventional and valorised positivist and ethnographic research strategies may not sufficiently facilitate understanding of the dynamics of war. There should not be firm rules, guidelines or regulations governing the actions of the researcher in conflict. As such, doing research in violent settings require reflexivity, flexibility and creativity in research strategies that respond to rapid changes. Research experiences in Mozambique show the need to use blended methods that include even less structured methodologies.

Originality/value

Fieldwork experiences in Cabo challenges researchers who cling to standardised research traditions which often hamper awareness of new postmodernist mode of thought applicable to war settings. It is essential to study the nature of African armed conflicts by combining creativity and flexibility in the selection of research strategies.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

1 – 10 of over 1000