Search results

1 – 3 of 3
Article
Publication date: 29 August 2023

Shakiba Narjabadi Fam and Ramona Massoud

Food safety is among the most important topics in the world. According to WHO guidelines, aflatoxins are one of the most hazardous food toxins. Therefore, their detection in food…

Abstract

Purpose

Food safety is among the most important topics in the world. According to WHO guidelines, aflatoxins are one of the most hazardous food toxins. Therefore, their detection in food products seems crucial due to health problems. The purpose of this paper is to discuss the different types of biosensors in aflatoxin determination.

Design/methodology/approach

Traditional detection methods are time consuming and expensive. As fast and accurate detection is important in monitoring food contaminants, alternative analytical methods would be essential. Biosensors are the intelligent design of sensitive sensors for precise detection of toxins in a short time. Various biosensors are being applied for aflatoxins detection in food products with many advantages over the traditional methods.

Findings

Biosensors are cost-effective, stable and have possessed high selectivity, specificity and accuracy in aflatoxins detection. Applying biosensors has been increased recently, so biosensing methods (optical, electrochemical, piezoelectrical, immunosensors, surface plasmon resonance and calorimetric) are discussed along with their advantages in this article.

Research limitations/implications

More efforts should be occurred to detect and decrease the aflatoxins by biosensors, and some traits like accuracy and selectivity would be the purpose of future projects. The combination of various techniques would also help in toxin detection issue in food products, so high efforts in this regard are also required for the upcoming years.

Originality/value

This article also reviews different types of biosensors simultaneously and explains their specificity for aflatoxin determination in different food products and also the future trends and requirements.

Details

Nutrition & Food Science , vol. 53 no. 8
Type: Research Article
ISSN: 0034-6659

Keywords

Case study
Publication date: 24 April 2024

Jared D. Harris, Samuel L. Slover, Bradley R. Agle, George W. Romney, Jenny Mead and Jimmy Scoville

In early 2014, recent Stanford University graduate Tyler Shultz was in a quandary. He had been working at Theranos, a blood-diagnostic company founded by Elizabeth Holmes, a…

Abstract

In early 2014, recent Stanford University graduate Tyler Shultz was in a quandary. He had been working at Theranos, a blood-diagnostic company founded by Elizabeth Holmes, a Stanford-dropout wunderkind, for almost a year. Shultz had learned enough about the company to realize that its practices and the efficacy of its much-touted finger-prick blood-testing technology were questionable and that the company was going to great lengths to hide this fact from the public and from regulators.

Theranos and Holmes were Silicon Valley darlings, enjoying positive press and lavish attention from potential investors and technology titans alike. Just as companies like PayPal had revolutionized the stagnant payments industry and Uber had upended the for-hire transportation sector, Theranos had been positioned as the latest technology firm to substantially disrupt yet another mature sector: the medical laboratory business. By the start of 2014, the company had raised more than $400 million in funding, and had an estimated market valuation of $9 billion.

Shultz's situation was exacerbated by the fact that his grandfather, the highly respected former US Secretary of State George Shultz, was on the Theranos board and was one of Elizabeth Holmes's biggest supporters.

But Tyler Shultz worried about the customers he was convinced were receiving highly unreliable and often inaccurate blood-test results. With so much at stake, Shultz wondered how he should proceed. Should he raise his concerns with the firm's investors? Blow the whistle externally? Report to industry regulators? Go away quietly?

This case and its subsequent four brief follow-up cases are based largely on interviews with Tyler Shultz, and outline the dilemma he faced and the various steps he would take both to extricate himself from his unsavory position and let the public know the full extent of the deception at Theranos.

Five optional handouts are available to instructors to further discussion after the case has been debriefed. The handouts serve as additional decision points for the students if your class time permits.

Article
Publication date: 1 January 2024

Xingxing Li, Shixi You, Zengchang Fan, Guangjun Li and Li Fu

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health…

Abstract

Purpose

This review provides an overview of recent advances in electrochemical sensors for analyte detection in saliva, highlighting their potential applications in diagnostics and health care. The purpose of this paper is to summarize the current state of the field, identify challenges and limitations and discuss future prospects for the development of saliva-based electrochemical sensors.

Design/methodology/approach

The paper reviews relevant literature and research articles to examine the latest developments in electrochemical sensing technologies for saliva analysis. It explores the use of various electrode materials, including carbon nanomaterial, metal nanoparticles and conducting polymers, as well as the integration of microfluidics, lab-on-a-chip (LOC) devices and wearable/implantable technologies. The design and fabrication methodologies used in these sensors are discussed, along with sample preparation techniques and biorecognition elements for enhancing sensor performance.

Findings

Electrochemical sensors for salivary analyte detection have demonstrated excellent potential for noninvasive, rapid and cost-effective diagnostics. Recent advancements have resulted in improved sensor selectivity, stability, sensitivity and compatibility with complex saliva samples. Integration with microfluidics and LOC technologies has shown promise in enhancing sensor efficiency and accuracy. In addition, wearable and implantable sensors enable continuous, real-time monitoring of salivary analytes, opening new avenues for personalized health care and disease management.

Originality/value

This review presents an up-to-date overview of electrochemical sensors for analyte detection in saliva, offering insights into their design, fabrication and performance. It highlights the originality and value of integrating electrochemical sensing with microfluidics, wearable/implantable technologies and point-of-care testing platforms. The review also identifies challenges and limitations, such as interference from other saliva components and the need for improved stability and reproducibility. Future prospects include the development of novel microfluidic devices, advanced materials and user-friendly diagnostic devices to unlock the full potential of saliva-based electrochemical sensing in clinical practice.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 3 of 3