Search results

21 – 30 of over 37000
Article
Publication date: 5 September 2020

Yanan Yu, Marguerite Moore and Lisa P. Chapman

The study primarily aims to examine an emerging fashion technology, direct-to-garment (DTG) printing, using data mining-driven social network analysis (SNA). Simultaneously, the…

Abstract

Purpose

The study primarily aims to examine an emerging fashion technology, direct-to-garment (DTG) printing, using data mining-driven social network analysis (SNA). Simultaneously, the study also demonstrates application of a group novel computational technique to capture, analyze and visually depict data for strategic insight into the fashion industry.

Design/methodology/approach

A total of 5,060 tweets related to DTG were captured using Crimson Hexagon. Python and Gephi were applied to convert, calculate and visualize the yearly networks for 2016–2019. Based on graph theory, degree centrality and betweenness centrality indices guide interpretation of the outcome networks.

Findings

The findings reveal insights into DTG printing technology networks through identification of interrelated indicators (i.e. nodes, edges and communities) over time. Deeper interpretation of the dominant indicators and the unique changes within each of the DTG communities were investigated and discussed.

Practical implications

Three SNA models suggest directions including the dominant apparel categories for DTG application, competing alternatives for apparel decorating approaches to DTG and growing market niches for DTG. Interpretation of the yearly networks suggests evolution of this domain over the investigation period.

Originality/value

The social media based, data mining-driven SNA method provides a novel path and a powerful technique for scholars and practitioners to investigate information among complex, abstract or novel topics such as DTG. Context specific findings provide initial insight into the evolving competitive structures driving DTG in the fashion market.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 2 April 2024

Shilpi Aggarwal

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial…

Abstract

Purpose

Everyone is extremely concerned about environmental protection and health safety due to the rise in living standards. Plant-derived natural dyes have garnered much industrial attention in food, pharmaceutical, textile, cosmetics, etc. owing to their health and environmental benefits. The present study aims to focus on the elimination of the use of synthetic dyes and provides brief information about natural dyes, their sources, extraction procedures with characterization and various advantages and disadvantages.

Design/methodology/approach

In producing natural colors, extraction and purification are essential steps. Various conventional methods used till date have a low yield, as these consume a lot of solvent volume, time, labor and energy or may destroy the coloring behavior of the actual molecules. The establishment of proper characterization and certification protocols for natural dyes would improve the yielding of natural dyes and benefit both producers and users.

Findings

However, scientists have found modern extraction methods to obtain maximum color yield. They are also modifying the fabric surface to appraise its uptake behavior of color. Various extraction techniques such as solvent, aqueous, enzymatic and fermentation and extraction with microwave or ultrasonic energy, supercritical fluid extraction and alkaline or acid extraction are currently available for these natural dyes and are summarized in the present review article.

Originality/value

If natural dye availability can be increased by the different extraction measures and the cost of purified dyes can be brought down with a proper certification mechanism, there is a wide scope for the adoption of these dyes by small-scale dyeing units.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 April 2001

25

Abstract

Details

Pigment & Resin Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Book part
Publication date: 26 June 2007

Kazuo Ichijo

Sharp Corporation, established in 1912, has always tried to identify unique niches that its competitors do not enter, while at the same time continuing to pursue innovation and…

Abstract

Sharp Corporation, established in 1912, has always tried to identify unique niches that its competitors do not enter, while at the same time continuing to pursue innovation and knowledge creation in those niches. The liquid crystal display (LCD) business is a typical example of Sharp's strategy and innovation. Sharp developed the first successful LCD product – a pocket calculator with a small black and white LCD in 1973 – and since then the company has released a series of unique products with LCDs, including PDAs and camcorders. In 1998, in the face of increasing competition in the traditional cathode-ray tube (CRT) TV market, Katsuhiko Machida, the company's new president and strategic leader, announced his vision of upgrading all bulky CRT televisions sold in the domestic market to flat screen LCD sets by 2005. This vision was bold, since Sharp was the first producer of color CRT TVs and its business was still profitable at the time. However, Machida as strategic leader, predicted tough price competition in the CRT business in the future and began to mobilize Sharp's employees to gain and sustain competitive advantage in the new market.

Details

Being There Even When You Are Not
Type: Book
ISBN: 978-6-6110-4908-9

Article
Publication date: 21 February 2024

Bahareh Babaie, Mohsen Najafi and Maryam Ataeefard

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production…

Abstract

Purpose

Toner is a crucial dry colorant composite used in printing based on the electrophotographic process. The quality of printed images is greatly influenced by the toner production method and material formulation. Chemically in situ polymerization methods are currently preferred. This paper aims to optimize the characteristics of a composite produced through emulsion polymerization using common raw materials for electrophotographic toner production.

Design/methodology/approach

Emulsion polymerization provides the possibility to optimize the physical and color properties of the final products. Response surface methodology (RSM) was used to optimize variables affecting particle size (PS), PS distribution (PSD), glass transition temperature (Tg°C), color properties (ΔE) and monomer conversion. Box–Behnken experimental design with three levels of styrene and butyl acrylate monomer ratios, carbon black pigment and sodium dodecyl sulfate surfactant was used for RSM optimization. Additionally, thermogravimetric analysis and surface morphology of composite particles were examined.

Findings

The results indicated that colorants with small PS, narrow PSDs, spherical shape morphology, acceptable thermal and color properties and a high percentage of conversion could be easily prepared by optimization of material parameters in this method. The anticipated outcome of the present inquiry holds promise as a guiding beacon toward the realization of electrographic toner of superior quality and exceptional efficacy, a vital factor for streamlined mass production.

Originality/value

To the best of the authors’ knowledge, for the first time, material parameters were evaluated to determine their impact on the characteristics of emulsion polymerized toner composites.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 October 2018

Ali Shams Nateri, Elham Hasanlou and Abbas Hajipour

Artificial intelligence (AI) methods, such as genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS), are capable of providing superior solutions for the…

Abstract

Purpose

Artificial intelligence (AI) methods, such as genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS), are capable of providing superior solutions for the simulation and the modeling of complex problems. The purpose of this study is to estimate the dye and the silver nanoparticle (AgNP) concentrations of silver nanoparticle-treated silk fabrics by the aforementioned methods.

Design/methodology/approach

In this study, the color and the antimicrobial properties of silver nanoparticle-treated silk fabrics were matched by using the GA technique based on spectrophotometric color matching. The ANFIS method was also used; this method is based on the grid partitioning algorithm across four different methods. The first and second methods are provided for dye concentration prediction, and the third and the fourth methods are given for AgNP concentration prediction.

Findings

The mean of absolute error and root mean square (RMS) of the best dye concentration prediction by the ANFIS method based on the second method are 0.087 and 0.103, respectively. In addition, the mean of the absolute error and the RMS of the best results for AgNP concentration prediction by the ANFIS method by using the third method is 0.002 and 0.003, respectively. The obtained results indicate that the performance of the ANFIS method is better than the GA method.

Originality value

The simultaneous prediction of the color and the antimicrobial properties of silver nanoparticle-treated silk fabrics was performed by using the GA and the ANFIS. The suggested method led to acceptable accuracy for color and antibacterial matching.

Details

Pigment & Resin Technology, vol. 48 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 March 2022

Saeed Bastani, Mojtaba Jalili, Mehdi Ghahari and Parand Banihashem

This study aims to investigate the effect of trisodium nitrilotriacetic acid (NTA) on the physical and luminescence emission properties of NaLuF4:Yb, Tm Upconversion (UC…

Abstract

Purpose

This study aims to investigate the effect of trisodium nitrilotriacetic acid (NTA) on the physical and luminescence emission properties of NaLuF4:Yb, Tm Upconversion (UC) particles and compared with trisodium citrate (CA). Upconversion materials have been remarkably considered in many applications in the past decades. However, the morphology of the UC particles affects their emission properties, depending on the synthesis situation.

Design/methodology/approach

The UC particles were synthesized by the hydrothermal method. Properties such as crystal phase, particle morphology, particle size, smoothness and uniformity of particle surface and their emission intensity in the UV–Vis region were studied.

Findings

Observations showed that pH is an essential factor in determining the crystalline phase. In addition, quality factors affect the morphology, particle size and surface smoothness of crystalline facets. It was also found that the UC particles synthesized in the presence of trisodium NTA have a much higher emission intensity than those synthesized in the presence of CA. The use of UC particles in security inks to maintain the brand was also investigated.

Originality/value

To the best of the authors’ knowledge, for the first time, the effect of trisodium NTA as a chelating agent was investigated on morphology and UC intensity of NaLuF4:Yb,Tm phosphor.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 July 2022

Ali Baqaei, Ali Asghar Sabbagh Alvani and Hassan Sameie

Over the past decades, intense efforts have been devoted to design and synthesize efficient photocatalysts which are active under sunlight for environmental and energy…

Abstract

Purpose

Over the past decades, intense efforts have been devoted to design and synthesize efficient photocatalysts which are active under sunlight for environmental and energy applications. Titanium dioxide (TiO2) has attracted much attention over many years for organic contaminant degradation in air or water due to its strong optical absorptivity, chemical stability and low cost. However, TiO2 has a very low photo quantum yield which prompts the easy recombination of photogeneration electron/hole pairs. In addition, bandgap of 3.2 eV restrains application of this photocatalyst mainly to the UV range.

Design/methodology/approach

Vertically oriented one-dimensional TiO2 nanostructures remarkably improve electron transport by creating a direct conduction pathway, decreasing intercrystalline contacts and stretching grown structure with the specified directionality. In this research, to enhance the visible light absorbance of TiO2, prearranged hydrogenated titanium dioxide nanorods (H-TNRs) in the presence of H2/N2 gas flow are hydrothermally synthesized.

Findings

The X-ray diffraction patterns illustrated the characteristic peaks of tetragonal rutile TiO2 and confirmed that there is no phase change after hydrogenation. Trivalent titanium ions surface defects and oxygen vacancies were considered as major reasons for redshift of absorption edge toward visible region and subsequently narrowing the bandgap to 2.27 eV. The optimized photocatalysts exhibited high visible-light-driven photocatalytic activity for degradation of methylene blue in water within 210. The synthesized H-TNRs established themselves as promising photocatalysts for organic compounds degradation in the aqueous solution.

Originality/value

To the best of the authors’ knowledge, this work is original and has not been published elsewhere nor is it currently under consideration for publication elsewhere.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 January 2006

65

Abstract

Details

Pigment & Resin Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Abstract

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

21 – 30 of over 37000