Search results

1 – 10 of 217
Article
Publication date: 8 December 2023

Han Sun, Song Tang, Xiaozhi Qi, Zhiyuan Ma and Jianxin Gao

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose…

Abstract

Purpose

This study aims to introduce a novel noise filter module designed for LiDAR simultaneous localization and mapping (SLAM) systems. The primary objective is to enhance pose estimation accuracy and improve the overall system performance in outdoor environments.

Design/methodology/approach

Distinct from traditional approaches, MCFilter emphasizes enhancing point cloud data quality at the pixel level. This framework hinges on two primary elements. First, the D-Tracker, a tracking algorithm, is grounded on multiresolution three-dimensional (3D) descriptors and adeptly maintains a balance between precision and efficiency. Second, the R-Filter introduces a pixel-level attribute named motion-correlation, which effectively identifies and removes dynamic points. Furthermore, designed as a modular component, MCFilter ensures seamless integration into existing LiDAR SLAM systems.

Findings

Based on rigorous testing with public data sets and real-world conditions, the MCFilter reported an increase in average accuracy of 12.39% and reduced processing time by 24.18%. These outcomes emphasize the method’s effectiveness in refining the performance of current LiDAR SLAM systems.

Originality/value

In this study, the authors present a novel 3D descriptor tracker designed for consistent feature point matching across successive frames. The authors also propose an innovative attribute to detect and eliminate noise points. Experimental results demonstrate that integrating this method into existing LiDAR SLAM systems yields state-of-the-art performance.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 19 July 2023

Ruochen Zeng, Jonathan J.S. Shi, Chao Wang and Tao Lu

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built…

Abstract

Purpose

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built building information modeling (BIM) models for quality assessment, schedule control and energy performance within construction projects. To enhance the as-built modeling efficiency, this study explores an integrated system, called Auto-Scan-To-BIM (ASTB), with an aim to automatically generate a complete Industry Foundation Classes (IFC) model consisted of the 3D building elements for the given building based on its point cloud without requiring additional modeling tools.

Design/methodology/approach

ASTB has been developed with three function modules. Taking the scanned point data as input, Module 1 is built on the basis of the widely used region segmentation methodology and expanded with enhanced plane boundary line detection methods and corner recalibration algorithms. Then, Module 2 is developed with a domain knowledge-based heuristic method to analyze the features of the recognized planes, to associate them with corresponding building elements and to create BIM models. Based on the spatial relationships between these building elements, Module 3 generates a complete IFC model for the entire project compatible with any BIM software.

Findings

A case study validated the ASTB with an application with five common types of building elements (e.g. wall, floor, ceiling, window and door).

Originality/value

First, an integrated system, ASTB, is developed to generate a BIM model from scanned point cloud data without using additional modeling tools. Second, an enhanced plane boundary line detection method and a corner recalibration algorithm are developed in ASTB with high accuracy in obtaining the true surface planes. At last, the research contributes to develop a module, which can automatically convert the identified building elements into an IFC format based on the geometry and spatial relationships of each plan.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 July 2023

Chuyu Tang, Genliang Chen, Hao Wang and Yangfan Yu

Hull block assembly is a vital task in ship construction. It is necessary to obtain the actual poses of the assembly features to guide further block alignment. Traditional methods…

83

Abstract

Purpose

Hull block assembly is a vital task in ship construction. It is necessary to obtain the actual poses of the assembly features to guide further block alignment. Traditional methods use single-point measurement, which is time-consuming and may lead to loss of key information. Thus, large-scale scanning is introduced for data acquisition, and this paper aims to provide a precise and robust method for retrieving poses based on point set registration.

Design/methodology/approach

The main problem of point registration is to find the correct transformation between the model and the scene. In this paper, a vote framework based on a new point pair feature is used to calculate the transformation. First, a special edge indicator for multiplate objects is proposed to determine the edges. Subsequently, pair features with an edge description are noted for every point. Finally, a voting scheme based on agglomerative clustering is implemented to determine the optimal transformation.

Findings

The proposed method not only improves registration efficiency but also maintains high accuracy compared to several commonly used approaches. In particular, for objects composed of plates, the results of pose estimation are more promising because of the compact pair feature. The multiple ship longitudinal localization experiment validates the effectiveness in real scan applications.

Originality/value

The proposed edge description performs a better detection for the edges of multiplate objects. The pair feature incorporating the edge indicator is more discriminative than the original template, resulting in better robustness to outliers, noise and occlusions.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 31 May 2023

Ziqi Chai, Chao Liu and Zhenhua Xiong

Template matching is one of the most suitable choices for full six degrees of freedom pose estimation in many practical industrial applications. However, the increasing number of…

134

Abstract

Purpose

Template matching is one of the most suitable choices for full six degrees of freedom pose estimation in many practical industrial applications. However, the increasing number of templates while dealing with a wide range of viewpoint changes results in a long runtime, which may not meet the real-time requirements. This paper aims to improve matching efficiency while maintaining sample resolution and matching accuracy.

Design/methodology/approach

A multi-pyramid-based hierarchical template matching strategy is proposed. Three pyramids are established at the sphere subdivision, radius and in-plane rotation levels during the offline template render stage. Then, a hierarchical template matching is performed from the highest to the lowest level in each pyramid, narrowing the global search space and expanding the local search space. The initial search parameters at the top level can be determined by the preprocessing of the YOLOv3 object detection network to further improve real-time performance.

Findings

Experimental results show that this matching strategy takes only 100 ms under 100k templates without loss of accuracy, promising for real industrial applications. The authors further validated the approach by applying it to a real robot grasping task.

Originality/value

The matching framework in this paper improves the template matching efficiency by two orders of magnitude and is validated using a common template definition and viewpoint sampling methods. In addition, it can be easily adapted to other template definitions and viewpoint sampling methods.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 October 2021

Boppana V. Chowdary and Deepak Jaglal

This paper aims to present a reverse engineering (RE) approach for three-dimensional (3D) model reconstruction and fast prototyping (FP) of broken chess pieces.

Abstract

Purpose

This paper aims to present a reverse engineering (RE) approach for three-dimensional (3D) model reconstruction and fast prototyping (FP) of broken chess pieces.

Design/methodology/approach

A case study involving a broken chess piece was selected to demonstrate the effectiveness of the proposed unconventional RE approach. Initially, a laser 3D scanner was used to acquire a (non-uniform rational B-spline) surface model of the object, which was then processed to develop a parametric computer aided design (CAD) model combined with geometric design and tolerancing (GD&T) technique for evaluation and then for FP of the part using a computer numerical controlled (CNC) machine.

Findings

The effectiveness of the proposed approach for reconstruction and FP of rotational parts was ascertained through a sample part. The study demonstrates non-contact data acquisition technologies such as 3D laser scanners together with RE systems can support to capture the entire part geometry that was broken/worn and developed quickly through the application of computer aided manufacturing principles and a CNC machine. The results indicate that design communication, customer involvement and FP can be efficiently accomplished by means of an integrated RE workflow combined with rapid product development tools and techniques.

Originality/value

This research established a RE approach for the acquisition of broken/worn part data and the development of parametric CAD models. Then, the developed 3D CAD model was inspected for accuracy by means of the GD&T approach and rapidly developed using a CNC machine. Further, the proposed RE led FP approach can provide solutions to similar industrial situations wherein agility in the product design and development process is necessary to produce physical samples and functional replacement parts for aging systems in a short turnaround time.

Details

Journal of Engineering, Design and Technology, vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 December 2023

Jinchao Huang

Single-shot multi-category clothing recognition and retrieval play a crucial role in online searching and offline settlement scenarios. Existing clothing recognition methods based…

Abstract

Purpose

Single-shot multi-category clothing recognition and retrieval play a crucial role in online searching and offline settlement scenarios. Existing clothing recognition methods based on RGBD clothing images often suffer from high-dimensional feature representations, leading to compromised performance and efficiency.

Design/methodology/approach

To address this issue, this paper proposes a novel method called Manifold Embedded Discriminative Feature Selection (MEDFS) to select global and local features, thereby reducing the dimensionality of the feature representation and improving performance. Specifically, by combining three global features and three local features, a low-dimensional embedding is constructed to capture the correlations between features and categories. The MEDFS method designs an optimization framework utilizing manifold mapping and sparse regularization to achieve feature selection. The optimization objective is solved using an alternating iterative strategy, ensuring convergence.

Findings

Empirical studies conducted on a publicly available RGBD clothing image dataset demonstrate that the proposed MEDFS method achieves highly competitive clothing classification performance while maintaining efficiency in clothing recognition and retrieval.

Originality/value

This paper introduces a novel approach for multi-category clothing recognition and retrieval, incorporating the selection of global and local features. The proposed method holds potential for practical applications in real-world clothing scenarios.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 30 April 2024

Baoxu Tu, Yuanfei Zhang, Kang Min, Fenglei Ni and Minghe Jin

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction…

Abstract

Purpose

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image. The authors used three feature extraction methods: handcrafted features, convolutional features and autoencoder features. Subsequently, these features were mapped to contact locations through a contact location regression network. Finally, the network performance was evaluated using spherical fittings of three different radii to further determine the optimal feature extraction method.

Design/methodology/approach

This paper aims to estimate contact location from sparse and high-dimensional soft tactile array sensor data using the tactile image.

Findings

This research indicates that data collected by probes can be used for contact localization. Introducing a batch normalization layer after the feature extraction stage significantly enhances the model’s generalization performance. Through qualitative and quantitative analyses, the authors conclude that convolutional methods can more accurately estimate contact locations.

Originality/value

The paper provides both qualitative and quantitative analyses of the performance of three contact localization methods across different datasets. To address the challenge of obtaining accurate contact locations in quantitative analysis, an indirect measurement metric is proposed.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 December 2022

Jiaxiang Hu, Xiaojun Shi, Chunyun Ma, Xin Yao and Yingxin Wang

The purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state…

Abstract

Purpose

The purpose of this paper is to propose a multi-feature, multi-metric and multi-loop tightly coupled LiDAR-visual-inertial odometry, M3LVI, for high-accuracy and robust state estimation and mapping.

Design/methodology/approach

M3LVI is built atop a factor graph and composed of two subsystems, a LiDAR-inertial system (LIS) and a visual-inertial system (VIS). LIS implements multi-feature extraction on point cloud, and then multi-metric transformation estimation is implemented to realize LiDAR odometry. LiDAR-enhanced images and IMU pre-integration have been used in VIS to realize visual odometry, providing a reliable initial guess for LIS matching module. Location recognition is performed by a dual loop module combined with Bag of Words and LiDAR-Iris to correct accumulated drift. M³LVI also functions properly when one of the subsystems failed, which greatly increases the robustness in degraded environments.

Findings

Quantitative experiments were conducted on the KITTI data set and the campus data set to evaluate the M3LVI. The experimental results show the algorithm has higher pose estimation accuracy than existing methods.

Practical implications

The proposed method can greatly improve the positioning and mapping accuracy of AGV, and has an important impact on AGV material distribution, which is one of the most important applications of industrial robots.

Originality/value

M3LVI divides the original point cloud into six types, and uses multi-metric transformation estimation to estimate the state of robot and adopts factor graph optimization model to optimize the state estimation, which improves the accuracy of pose estimation. When one subsystem fails, the other system can complete the positioning work independently, which greatly increases the robustness in degraded environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 December 2023

Baoru Ge and Yun Xue

Based on Kansei Engineering, this study obtained consumers' emotional preferences aiming to enhance the emotional connection between consumers and clothing to extend the service…

Abstract

Purpose

Based on Kansei Engineering, this study obtained consumers' emotional preferences aiming to enhance the emotional connection between consumers and clothing to extend the service life of clothing and realize sustainable clothing design.

Design/methodology/approach

Six Kansei word pairs that are the most important to consumers were identified through literature reviews, magazines, websites, card sorting of consumers and cluster analysis. Finally, the consumers scored the 32 product specimens through a 5-level rating semantic differential scale questionnaire of six Kansei word pairs. The researchers verified the consumers' emotional preferences through principal component analysis and established the relationship between Kansei words and design elements of color through partial least squares.

Findings

The study found consumers' emotional preferences: elegant, minimalist, formal, casual, mature, practical and distinctive style. Besides white, black, gray, blue, consumers will also like red and yellow-red in the future. The crucial findings of this study are to get recommended guidelines that consumers' emotional preferences match the corresponding design elements.

Originality/value

The study's findings can be used to style the design of men's plain-color shirts and guide online marketers and designers to design apparel that meets consumers' emotional needs to develop consumers' sustainability reliance on clothing. This study also explains the overall process and methodology for integrating consumer preferences and product design elements.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1361-2026

Keywords

Open Access
Article
Publication date: 22 May 2023

Peter G. Kelly, Benjamin H. Gallup and Joseph D. Roy-Mayhew

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on…

1140

Abstract

Purpose

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on a part have conflicting optimal orientations, the part is unavoidably compromised. This paper aims to demonstrate a strategy in which conflicting features can be functionally separated into “co-parts” which are individually aligned in an optimal orientation, selectively reinforced with continuous fiber, printed simultaneously and, finally, assembled into a composite part with substantially improved performance.

Design/methodology/approach

Several candidate parts were selected for co-part decomposition. They were printed as standard fused filament fabrication plastic parts, parts reinforced with continuous fiber in one plane and co-part assemblies both with and without continuous fiber reinforcement (CFR). All parts were loaded until failure. Additionally, parts representative of common suboptimally oriented features (“unit tests”) were similarly printed and tested.

Findings

CFR delivered substantial improvement over unreinforced plastic-only parts in both standard parts and co-part assemblies, as expected. Reinforced parts held up to 2.5x the ultimate load of equivalent plastic-only parts. The co-part strategy delivered even greater improvement, particularly when also reinforced with continuous fiber. Plastic-only co-part assemblies held up to 3.2x the ultimate load of equivalent plastic only parts. Continuous fiber reinforced co-part assemblies held up to 6.4x the ultimate load of equivalent plastic-only parts. Additionally, the thought process behind general co-part design is explored and a vision of simulation-driven automated co-part implementation is discussed.

Originality/value

This technique is a novel way to overcome one of the most common challenges preventing the functional use of additively manufactured parts. It delivers compelling performance with continuous carbon fiber reinforcement in 3D printed parts. Further study could extend the technique to any anisotropic manufacturing method, additive or otherwise.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 217