Search results

1 – 4 of 4
Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 3 May 2022

Amir A. Abdelsalam, Salwa H. El-Sabbagh, Wael S. Mohamed and Mohsen A. Khozami

This study aims to investigate the swelling behavior, mechanical and thermal properties of ternary rubber blend composites prepared by melt blending based on carbon black…

Abstract

Purpose

This study aims to investigate the swelling behavior, mechanical and thermal properties of ternary rubber blend composites prepared by melt blending based on carbon black (CB)-filled natural rubber (NR)/styrene-butadiene rubber (SBR)/nitrile butadiene rubber (NBR) blends, containing a variety of compatibilizers. Various compatibilizers, maleic acid anhydride (MAH), prepared emulsion and adhesion system (HRH) were used. A series of NR/SBR/NBR blends at a 30/30/40 blend ratio reinforced with 45 phr of CB were prepared using the master-batch method.

Design/methodology/approach

Thermal aging properties of the composites characterized by their aging coefficient and retention in tensile and elongation at break (E.B. %). Thermal degradation of ternary rubber blend composites based on melt blending has been studied using thermogravimetric analysis.

Findings

The swelling coefficient decreased with increased compatibilizer loading. Results also showed that the tensile strength and E.B. (%) decreased with aging over the entire aging period. Additionally, the addition of compatibilizers into the ternary rubber blend composite had slightly improved the thermal stability.

Research limitations/implications

Interactions between the different components of blends at the interfaces have a high impact on the interfacial properties of the rubber blend.

Practical implications

Compatibilizers significantly improve the properties of the resulting composites with the loading of investigated compatibilizers because of the uniform dispersion of CB in the rubber matrix.

Social implications

Using blends in the rubber industry led to the high-efficiency production of low-cost products.

Originality/value

The rubber blending has a significant positive effect on a wide range of applications such as structural applications, aerospace, military, packaging, tires and biomedical, so improving the compatibility of blends will make new materials suitable for new applications.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 April 2024

Shuang Huang, Haitao Zhang and Tengjiang Yu

This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the…

Abstract

Purpose

This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the correlation between macro rheological indexes and micro infrared spectroscopy indexes.

Design/methodology/approach

First, a dynamic shear rheometer and a bending beam rheometer were used to obtain the evaluation indexes of high- and low-temperature rheological characteristics for asphalt (virgin, SBS/styrene butadiene rubber [SBR], SBS/rubber and SBR/rubber) respectively, and its variation rules were analyzed. Subsequently, the infrared spectroscopy test was used to obtain the micro rheological characteristics of asphalt, which were qualitatively and quantitatively analyzed, and its variation rules were analyzed. Finally, with the help of GRA, the macro-micro evaluation indexes were correlated, and the improvement efficiency of composite modifiers on asphalt was explored from rheological characteristics.

Findings

It was found that the deformation resistance and aging resistance of SBS/rubber composite modified asphalt are relatively good, and the modification effect of composite modifier and virgin asphalt is realized through physical combination, and the rheological characteristics change with the accumulation of functional groups. The correlation between macro rutting factor and micro functional group index is high, and the relationship between macro Burgers model parameters and micro functional group index is also close.

Originality/value

Results reveal the basic principle of inherent-improved synergistic effect for composite modifiers on asphalt and provide a theoretical basis for improving the composite modified asphalt.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 August 2022

Yuting Lu, Wanwan Fu, hao Ren, Shifang Wu, Jiesheng Liu and Hao Peng

The purpose of this paper is to develop a high-performance composite emulsion cement waterproof coating. The coating has excellent durability and is effective in protecting cement…

Abstract

Purpose

The purpose of this paper is to develop a high-performance composite emulsion cement waterproof coating. The coating has excellent durability and is effective in protecting cement mortar substrates from harmful ions.

Design/methodology/approach

The polymer cement waterproof coatings with different emulsion compounding ratios were tested for mechanical properties and water resistance after alkali immersion, water immersion, thermal aging and UV aging, and the coatings were analyzed by infrared spectroscopy after aging to evaluate its durability. Meanwhile, the coating that presents favorable durability was applied to cement mortar test blocks. The protective effect of the coating on the test blocks was tested by immersion method, and X-ray diffraction analysis was performed on the eroded test blocks.

Findings

The coating with neoprene latex/acrylate latex weight ratio of 90/10 presents favorable durability and has superior overall performance. Besides, when it is applied to cement mortar blocks, the coatings effectively reduced the erosive effect of harmful ions on cement mortar blocks, resulting in much lower mass change ratios and less internal structural damage of the blocks significantly.

Originality/value

The obtained coating will be of great application potential for use in building waterproofing construction. Moreover, the coating can practically prevent chloride ions and sulfate ions from penetrating cement-based materials.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 4 of 4