Search results

1 – 2 of 2
Article
Publication date: 20 April 2020

Chengguo Zong, Zhijian Ji, Junzhi Yu and Haisheng Yu

The purpose of this paper is to study the adaptability of the tracked robot in complex working environment. It proposes an angle-changeable tracked robot with human–robot…

Abstract

Purpose

The purpose of this paper is to study the adaptability of the tracked robot in complex working environment. It proposes an angle-changeable tracked robot with human–robot interaction in unstructured environment. The study aims to present the mechanical structure and human–robot interaction control system of the tracked robot and analyze the static stability of the robot working in three terrains, i.e. rugged terrain, sloped terrain and stairs.

Design/methodology/approach

The paper presents the mechanical structure and human–robot interaction control system of the tracked robot. To prevent the detachment of the tracks during obstacle navigation, a new type of passively adaptive device based on the relationship between the track’s variable angle and the forces is presented. Then three types of rough terrain are chosen to analyze the static stability of the tracked robot, i.e. rugged terrain, sloped terrain and stairs.

Findings

This paper provides the design method of the tracked robot. Owing to its appropriate dimensions, good mass distribution and limited velocity, the tracked robot remains stable on the complex terrains. The experimental results verify the effectiveness of the design method.

Originality/value

The theoretical analysis of this paper provides basic reference for the structural design of tracked robots.

Details

Assembly Automation, vol. 40 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 April 2019

Chengguo Zong, Zhijian Ji and Haisheng Yu

This paper aims to provide a theoretical principle for the stability control of robot climbing stairs, autonomously based on human–robot interaction. Through this research…

Abstract

Purpose

This paper aims to provide a theoretical principle for the stability control of robot climbing stairs, autonomously based on human–robot interaction. Through this research, tracked mobile robots with human-robot interaction will be extensively used in rescue in disaster, exploration on planetary, fighting in battle, and searching for survivors in collapsed buildings.

Design/methodology/approach

This paper introduces the tracked mobile robot, based on human–robot interaction, and its six moving postures. The dynamic process of climbing stairs is analyzed, and the dynamic model of the robot is proposed. The dynamic stability criterion is derived when the tracked mobile robot contacts the stairs steps in one, two and more points. A further conduction of simulation on the relationship of the traction force and bearing force vs the velocity and acceleration in the three cases was carried out.

Findings

This paper explains that the tracked mobile robot, based on human–robot interaction, can stably climb stairs so long as the velocity and acceleration satisfy the dynamic stability criterion as noted above. In addition, the experiment tests the correctness of dynamic stability analysis when the tracked mobile robot contacts the stair steps in one, two or more points.

Originality/value

This paper provides the mechanical structure and working principle of the tracked mobile robot based on human–robot interaction and proposes an identification method of dynamic stability criterion when the robot contacts the stairs steps in one, two and more points.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 2 of 2