Search results

1 – 2 of 2
Article
Publication date: 20 November 2023

Chandrapushpam T., M. Bhuvaneswari and Sivasankaran Sivanandam

This paper aims to explore the double diffusive magneto-hydrodynamic (MHD) squeezed flow of (Cu–water) nanofluid between two analogous plates filled with Darcy porous material in…

Abstract

Purpose

This paper aims to explore the double diffusive magneto-hydrodynamic (MHD) squeezed flow of (Cu–water) nanofluid between two analogous plates filled with Darcy porous material in existence of chemical reaction and external magnetic field.

Design/methodology/approach

The governing nonlinear equations are transformed into ordinary differential equations by means of similarity transforms, and the coupled mass and heat transference equations are resolved analytically with the application of differential transform method (DTM). The effects of different relevant parameters on velocity, temperature and concentration, including the squeeze number, magnetic parameter, Biot number, Darcy number and chemical reaction parameter, are illustrated with figures. In addition, for various parameters, the local skin friction coefficient, local Nusselt number and local Sherwood number are computed and are graphically displayed.

Findings

It is observed that the squeeze number has a direct relationship with Sherwood number and an inverse relationship with skin friction as Biot number increases. With enhanced Biot numbers, the temperature value increases during both squeeze and non-squeeze moments, but the temperature values are higher for squeeze moments compared to the other case.

Practical implications

This research has potential applications in various large-scale enterprises that might benefit from increased productivity.

Social implications

The results are useful to thermal science community.

Originality/value

Unique and valuable insights are provided by studying the impact of chemical reaction on double diffusive MHD squeezing copper–water nanofluid flow between parallel plates filled with porous medium. In addition, this research has potential applications in various large-scale enterprises that might benefit from increased productivity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2023

A.K. Abdul Hakeem, Priya S., Ganga Bhose and Sivasankaran Sivanandam

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent…

Abstract

Purpose

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent years have witnessed significant progress in optimizing these fluids for enhanced heat transfer within porous (Darcy–Forchheimer) structures, offering promising solutions for various industries seeking improved thermalmanagement and energy efficiency.

Design/methodology/approach

The first step is to transform the original partial differential equations into a system of first-order ordinary differential equations (ODEs). The fourth-order Runge–Kutta method is chosen for its accuracy in solving ODEs. The present study investigates the free convective boundary layer flow of hybrid nanofluids over a moving thin inclined needle with the slip flow brought about by inclined Lorentz force and Darcy–Forchheimer porous matrix, viscous dissipation.

Findings

It is found that slip conditions (velocity and Thermal) exist for a range of the natural convection boundary layer flow. In the hybrid nanofluid flow, which consists of Al2O3 and Fe3O4 are nanoparticles, H2OC2H6O2 (50:50) are considered as the base fluid. The consequence of the governing parameter on the momentum and temperature profile distribution is graphically depicted. The range of the variables is 1 ≤ M ≤ 4, 1 ≤ d ≤ 2.5, 1 ≤ δ ≤ 4, 1 ≤ Fr ≤ 7, 1 ≤ Kr ≤ 7 and 0.5≤λ ≤ 3.5. The Nusselt number and skin friction factors are used to calculate the numerical values of various parameters, which are displayed in Table 4. These analyses elucidate that upsurges in the value of the Fr noticeably diminish the momentum and temperature. It is investigated to see if the contemporary results are in outstanding promise with the outcomes reported in earlier works.

Practical implications

The results can be very helpful to improve the energy efficiency of thermal systems.

Social implications

The hybrid nanofluids in heat transfer have the potential to improve the energy efficiency and performance of a wide range of systems.

Originality/value

This study proposes that in the combined effects of hybrid nanofluid properties, the inclined Lorentz force, the Darcy–Forchheimer model for porous media and viscous dissipation on the boundary layer flow of a conducting fluid over a moving thin inclined needle. Assessing the potential practical applications of the hybrid nanofluids in inclined needles, this could involve areas such as biomedical engineering, drug delivery systems or microfluidic devices. In future should explore the benefits and limitations of using hybrid nanofluids in these applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2