Search results

1 – 10 of 19
Article
Publication date: 15 December 2023

Huiling Li, Wenya Yuan and Jianzhong Xu

This study aimed to identify a specific taxonomy of entry modes for international construction contractors and to develop a decision-making mechanism based on case-based reasoning…

Abstract

Purpose

This study aimed to identify a specific taxonomy of entry modes for international construction contractors and to develop a decision-making mechanism based on case-based reasoning (CBR) to facilitate the selection of the most suitable entry modes.

Design/methodology/approach

According to the experience orientation of the construction industry, a CBR entry mode decision model was established, and based on successful historical cases, a two-step refinement process was carried out to identify similar situations. Then the validity of the model is proved by case analysis.

Findings

This study identified an entry mode taxonomy for international construction contractors (ICCs) and explored their decision-making mechanisms. First, a two-dimension model of entry mode for ICCs was constructed from ownership and value chain dimensions; seven common ICC entry modes were identified and ranked according to market commitment. Secondly, this study reveals the impact mechanism of the ICC entry mode from two aspects: the external environment and enterprise characteristics. Accordingly, an entry mode decision model is established.

Practical implications

Firstly, sorting out the categories of entry mode in the construction field, which provide an entry mode list for ICCs to select. Secondly, revealing the impact mechanism of ICC entry mode, which proposes a systematic decision-making system for the selection of ICC entry mode. Thirdly, constructing a CBR entry mode decision-making model from an empirical perspective, which offers tool support and reduces transaction costs in the decision-making process.

Originality/value

The study on entry modes for ICCs is still in the preliminary exploratory stage. The authors investigate the entry mode categories and decision-making mechanisms for ICCs based on Uppsala internationalization process theory. It widens the applied scope of Uppsala and promotes cross-disciplinary integration. In addition, the authors creatively propose a two-stage retrieval mechanism in the CBR model, which considers the order of decision variables. It refines the influence path of the decision variables on ICCs' entry mode.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 June 2023

Jianhua Zhang, Liangchen Li, Fredrick Ahenkora Boamah, Shuwei Zhang and Longfei He

This study aims to deal with the case adaptation problem associated with continuous data by providing a non-zero base solution for knowledge users in solving a given situation.

Abstract

Purpose

This study aims to deal with the case adaptation problem associated with continuous data by providing a non-zero base solution for knowledge users in solving a given situation.

Design/methodology/approach

Firstly, the neighbourhood transformation of the initial case base and the view similarity between the problem and the existing cases will be examined. Multiple cases with perspective similarity or above a predefined threshold will be used as the adaption cases. Secondly, on the decision rule set of the decision space, the deterministic decision model of the corresponding distance between the problem and the set of lower approximate objects under each choice class of the adaptation set is applied to extract the decision rule set of the case condition space. Finally, the solution elements of the problem will be reconstructed using the rule set and the values of the problem's conditional elements.

Findings

The findings suggest that the classic knowledge matching approach reveals the user with the most similar knowledge/cases but relatively low satisfaction. This also revealed a non-zero adaptation based on human–computer interaction, which has the difficulties of solid subjectivity and low adaptation efficiency.

Research limitations/implications

In this study the multi-case inductive adaptation of the problem to be solved is carried out by analyzing and extracting the law of the effect of the centralized conditions on the decision-making of the adaptation. The adaption process is more rigorous with less subjective influence better reliability and higher application value. The approach described in this research can directly change the original data set which is more beneficial to enhancing problem-solving accuracy while broadening the application area of the adaptation mechanism.

Practical implications

The examination of the calculation cases confirms the innovation of this study in comparison to the traditional method of matching cases with tacit knowledge extrapolation.

Social implications

The algorithm models established in this study develop theoretical directions for a multi-case induction adaptation study of tacit knowledge.

Originality/value

This study designs a multi-case induction adaptation scheme by combining NRS and CBR for implicitly knowledgeable exogenous cases. A game-theoretic combinatorial assignment method is applied to calculate the case view and the view similarity based on the threshold screening.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 October 2023

Chinthaka Niroshan Atapattu, Niluka Domingo and Monty Sutrisna

Cost overrun in infrastructure projects is a constant concern, with a need for a proper solution. The current estimation practice needs improvement to reduce cost overruns. This…

Abstract

Purpose

Cost overrun in infrastructure projects is a constant concern, with a need for a proper solution. The current estimation practice needs improvement to reduce cost overruns. This study aimed to find possible statistical modelling techniques that could be used to develop cost models to produce more reliable cost estimates.

Design/methodology/approach

A bibliographic literature review was conducted using a two-stage selection method to compile the relevant publications from Scopus. Then, Visualisation of Similarities (VOS)-Viewer was used to develop the visualisation maps for co-occurrence keyword analysis and yearly trends in research topics.

Findings

The study found seven primary techniques used as cost models in construction projects: regression analysis (RA), artificial neural network (ANN), case-based reasoning (CBR), fuzzy logic, Monte-Carlo simulation (MCS), support vector machine (SVM) and reference class forecasting (RCF). RA, ANN and CBR were the most researched techniques. Furthermore, it was observed that the model's performance could be improved by combining two or more techniques into one model.

Research limitations/implications

The research was limited to the findings from the bibliometric literature review.

Practical implications

The findings provided an assessment of statistical techniques that the industry can adopt to improve the traditional estimation practice of infrastructure projects.

Originality/value

This study mapped the research carried out on cost-modelling techniques and analysed the trends. It also reviewed the performance of the models developed for infrastructure projects. The findings could be used to further research to develop more reliable cost models using statistical modelling techniques with better performance.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 27 February 2024

Jianhua Zhang, Liangchen Li, Fredrick Ahenkora Boamah, Dandan Wen, Jiake Li and Dandan Guo

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of…

Abstract

Purpose

Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of the existing research in the industry, this paper proposes a case-adaptation optimization algorithm to support the effective application of tacit knowledge resources.

Design/methodology/approach

The attribute simplification algorithm based on the forward search strategy in the neighborhood decision information system is implemented to realize the vertical dimensionality reduction of the case base, and the fuzzy C-mean (FCM) clustering algorithm based on the simulated annealing genetic algorithm (SAGA) is implemented to compress the case base horizontally with multiple decision classes. Then, the subspace K-nearest neighbors (KNN) algorithm is used to induce the decision rules for the set of adapted cases to complete the optimization of the adaptation model.

Findings

The findings suggest the rapid enrichment of data, information and tacit knowledge in the field of practice has led to low efficiency and low utilization of knowledge dissemination, and this algorithm can effectively alleviate the problems of users falling into “knowledge disorientation” in the era of the knowledge economy.

Practical implications

This study provides a model with case knowledge that meets users’ needs, thereby effectively improving the application of the tacit knowledge in the explicit case base and the problem-solving efficiency of knowledge users.

Social implications

The adaptation model can serve as a stable and efficient prediction model to make predictions for the effects of the many logistics and e-commerce enterprises' plans.

Originality/value

This study designs a multi-decision class case-adaptation optimization study based on forward attribute selection strategy-neighborhood rough sets (FASS-NRS) and simulated annealing genetic algorithm-fuzzy C-means (SAGA-FCM) for tacit knowledgeable exogenous cases. By effectively organizing and adjusting tacit knowledge resources, knowledge service organizations can maintain their competitive advantages. The algorithm models established in this study develop theoretical directions for a multi-decision class case-adaptation optimization study of tacit knowledge.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 24 January 2023

Yali Wang, Jian Zuo, Min Pan, Bocun Tu, Rui-Dong Chang, Shicheng Liu, Feng Xiong and Na Dong

Accurate and timely cost prediction is critical to the success of construction projects which is still facing challenges especially at the early stage. In the context of rapid…

Abstract

Purpose

Accurate and timely cost prediction is critical to the success of construction projects which is still facing challenges especially at the early stage. In the context of rapid development of machine learning technology and the massive cost data from historical projects, this paper aims to propose a novel cost prediction model based on historical data with improved performance when only limited information about the new project is available.

Design/methodology/approach

The proposed approach combines regression analysis (RA) and artificial neural network (ANN) to build a novel hybrid cost prediction model with the former as front-end prediction and the latter as back-end correction. Firstly, the main factors influencing the cost of building projects are identified through literature research and subsequently screened by principal component analysis (PCA). Secondly the optimal RA model is determined through multi-model comparison and used for front-end prediction. Finally, ANN is applied to construct the error correction model. The hybrid RA-ANN model was trained and tested with cost data from 128 completed construction projects in China.

Findings

The results show that the hybrid cost prediction model has the advantages of both RA and ANN whose prediction accuracy is higher than that of RA and ANN only with the information such as total floor area, height and number of floors.

Originality/value

(1) The most critical influencing factors of the buildings’ cost are found out by means of PCA on the historical data. (2) A novel hybrid RA-ANN model is proposed which proved to have the advantages of both RA and ANN with higher accuracy. (3) The comparison among different models has been carried out which is helpful to future model selection.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 April 2024

Abdul-Manan Sadick, Argaw Gurmu and Chathuri Gunarathna

Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is…

Abstract

Purpose

Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is qualitative, posing additional challenges to achieving accurate cost estimates. Additionally, there is a lack of tools that use qualitative project information and forecast the budgets required for project completion. This research, therefore, aims to develop a model for setting project budgets (excluding land) during the pre-conceptual stage of residential buildings, where project information is mainly qualitative.

Design/methodology/approach

Due to the qualitative nature of project information at the pre-conception stage, a natural language processing model, DistilBERT (Distilled Bidirectional Encoder Representations from Transformers), was trained to predict the cost range of residential buildings at the pre-conception stage. The training and evaluation data included 63,899 building permit activity records (2021–2022) from the Victorian State Building Authority, Australia. The input data comprised the project description of each record, which included project location and basic material types (floor, frame, roofing, and external wall).

Findings

This research designed a novel tool for predicting the project budget based on preliminary project information. The model achieved 79% accuracy in classifying residential buildings into three cost_classes ($100,000-$300,000, $300,000-$500,000, $500,000-$1,200,000) and F1-scores of 0.85, 0.73, and 0.74, respectively. Additionally, the results show that the model learnt the contextual relationship between qualitative data like project location and cost.

Research limitations/implications

The current model was developed using data from Victoria state in Australia; hence, it would not return relevant outcomes for other contexts. However, future studies can adopt the methods to develop similar models for their context.

Originality/value

This research is the first to leverage a deep learning model, DistilBERT, for cost estimation at the pre-conception stage using basic project information like location and material types. Therefore, the model would contribute to overcoming data limitations for cost estimation at the pre-conception stage. Residential building stakeholders, like clients, designers, and estimators, can use the model to forecast the project budget at the pre-conception stage to facilitate decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 20 March 2023

Xu Zhang, Mark Goh, Sijun Bai and Zonghan Wang

Risk response decisions (RRDs) are vital for project risk mitigation. Although past research has focused on RRDs for independent single projects, it has scarcely explored how to…

Abstract

Purpose

Risk response decisions (RRDs) are vital for project risk mitigation. Although past research has focused on RRDs for independent single projects, it has scarcely explored how to make RRDs for single projects in project portfolios (SPPPs). Consequently, this study aims to bridge the gap in extant literature by developing an integrated approach to select risk response strategies (RRSs) for SPPPs considering objective adjustments and project interdependencies (PIs).

Design/methodology/approach

An integrated quality function deployment (QFD) method was used throughout this study. More so, a balanced score card (BSC) and stratified-Z-numbers-full consistency method (SZFUCOM) was applied to identify SPPP success criteria (SP3SC) to determine their weights. In addition, a spherical fuzzy set-design structure matrix (SFDSM) was used to quantify the correlation between the risks and the relationship between the risks and the predecessor projects. Consequently, the relationships between the risks and SP3SC and RRSs were described by the spherical fuzzy set (SFS) and Z-numbers, respectively. Besides, the results are weaved into QFD to transform SP3SC into risks and then into RRSs, while a linear optimization model is used to obtain the optimal RRSs. Lastly, a construction project portfolio (PP) was used to test the veracity of the results to prove their validity.

Findings

The approach to RRDs for single projects is observed to be different from that of SPPPs. In addition, this study finds that project portfolio objective adjustments (PPOAs) and PIs have significant impacts on RRDs given that they influence the risk priorities of independent single projects and SPPPs. Moreover, the application of an integrated QFD effectively synthesized the results from the findings of this study, as well as enabled companies to determine robust RRSs. Finally, the consistency results of the SZFUCOM were better than those of the triangular fuzzy number-full consistency method.

Originality/value

The study innovatively explores the method of RRDs for SPPP, which has been ignored by past research. SP3SC highly compatible with PP success is determined. Z-numbers are first used to evaluate the effect of RRSs to enhance the robustness of RRDs. The study proposes a method of RRDs comprehensively considering PPOAs and PIs, which provides robust methodological guidance for SPPP managers to control risks.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 25 December 2023

Isaac Akomea-Frimpong, Jacinta Rejoice Ama Delali Dzagli, Kenneth Eluerkeh, Franklina Boakyewaa Bonsu, Sabastina Opoku-Brafi, Samuel Gyimah, Nana Ama Sika Asuming, David Wireko Atibila and Augustine Senanu Kukah

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of…

Abstract

Purpose

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of public–private partnership (PPP) infrastructure projects. Such conferences together with available project reports and empirical studies recommend project managers and practitioners to adopt smart technologies and develop robust measures to tackle climate risk exposure. Comparatively, artificial intelligence (AI) risk management tools are better to mitigate climate risk, but it has been inadequately explored in the PPP sector. Thus, this study aims to explore the tools and roles of AI in climate risk management of PPP infrastructure projects.

Design/methodology/approach

Systematically, this study compiles and analyses 36 peer-reviewed journal articles sourced from Scopus, Web of Science, Google Scholar and PubMed.

Findings

The results demonstrate deep learning, building information modelling, robotic automations, remote sensors and fuzzy logic as major key AI-based risk models (tools) for PPP infrastructures. The roles of AI in climate risk management of PPPs include risk detection, analysis, controls and prediction.

Research limitations/implications

For researchers, the findings provide relevant guide for further investigations into AI and climate risks within the PPP research domain.

Practical implications

This article highlights the AI tools in mitigating climate crisis in PPP infrastructure management.

Originality/value

This article provides strong arguments for the utilisation of AI in understanding and managing numerous challenges related to climate change in PPP infrastructure projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 August 2023

Sudarsan Desul, Rabindra Kumar Mahapatra, Raj Kishore Patra, Mrutyunjay Sethy and Neha Pandey

The purpose of this study is to review the application of semantic technologies in cultural heritage (STCH) to achieve interoperability and enable advanced applications like 3D…

Abstract

Purpose

The purpose of this study is to review the application of semantic technologies in cultural heritage (STCH) to achieve interoperability and enable advanced applications like 3D modeling and augmented reality by enhancing the understanding and appreciation of CH. The study aims to identify the trends and patterns in using STCH and provide insights for scholars and policymakers on future research directions.

Design/methodology/approach

This research paper uses a bibliometric study to analyze the articles published in Scopus and Web of Science (WoS)-indexed journals from 1999 to 2022 on STCH. A total of 580 articles were analyzed using the Biblioshiny package in RStudio.

Findings

The study reveals a substantial increase in STCH publications since 2008, with Italy leading in contributions. Key research areas such as ontologies, semantic Web, linked data and digital humanities are extensively explored, highlighting their significance and characteristics within the STCH research domain.

Research limitations/implications

This study only analyzed articles published in Scopus and WoS-indexed journals in the English language. Further research could include articles published in other languages and non-indexed journals.

Originality/value

This study extensively analyses the research published on STCH over the past 23 years, identifying the leading authors, institutions, countries and top research topics. The findings provide guidelines for future research direction and contribute to the literature on promoting, preserving and managing the CH globally.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 13 June 2023

G. Deepa, A.J. Niranjana and A.S. Balu

This study aims at proposing a hybrid model for early cost prediction of a construction project. Early cost prediction for a construction project is the basic approach to procure…

Abstract

Purpose

This study aims at proposing a hybrid model for early cost prediction of a construction project. Early cost prediction for a construction project is the basic approach to procure a project within a predefined budget. However, most of the projects routinely face the impact of cost overruns. Furthermore, conventional and manual cost computing techniques are hectic, time-consuming and error-prone. To deal with such challenges, soft computing techniques such as artificial neural networks (ANNs), fuzzy logic and genetic algorithms are applied in construction management. Each technique has its own constraints not only in terms of efficiency but also in terms of feasibility, practicability, reliability and environmental impacts. However, appropriate combination of the techniques improves the model owing to their inherent nature.

Design/methodology/approach

This paper proposes a hybrid model by combining machine learning (ML) techniques with ANN to accurately predict the cost of pile foundations. The parameters contributing toward the cost of pile foundations were collected from five different projects in India. Out of 180 collected data entries, 176 entries were finally used after data cleaning. About 70% of the final data were used for building the model and the remaining 30% were used for validation.

Findings

The proposed model is capable of predicting the pile foundation costs with an accuracy of 97.42%.

Originality/value

Although various cost estimation techniques are available, appropriate use and combination of various ML techniques aid in improving the prediction accuracy. The proposed model will be a value addition to cost estimation of pile foundations.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 19