Search results

1 – 1 of 1
Article
Publication date: 7 September 2015

Takahiro Sato, Yuki Sato and Hajime Igarashi

The finite element method (FEM) for 3D models needs heavy computational cost. The computational cost for FE analysis of moving objects, e.g. Vibration energy harvester, must be…

Abstract

Purpose

The finite element method (FEM) for 3D models needs heavy computational cost. The computational cost for FE analysis of moving objects, e.g. Vibration energy harvester, must be reduced to exploit the simulation of the dynamic system in its design. The paper aims to discuss these issues.

Design/methodology/approach

To reduce the computational time of FEM, the model order reduction (MOR) based on proper orthogonal decomposition has been proposed. For the moving systems, MOR is modified.

Findings

It is shown that proposed MOR makes it possible to drastically reduce the coupling analysis of the energy harvester in which the equations of motion, magnetostatics, and circuit are repeatedly solved.

Originality/value

To reduce the computational time of FEM, block-MOR is presented, in which the whole domain is subdivided into N-blocks. As a result computational cost for MOR can be reduced.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1