Search results

1 – 9 of 9
Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 22 May 2023

Peter G. Kelly, Benjamin H. Gallup and Joseph D. Roy-Mayhew

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on…

1119

Abstract

Purpose

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on a part have conflicting optimal orientations, the part is unavoidably compromised. This paper aims to demonstrate a strategy in which conflicting features can be functionally separated into “co-parts” which are individually aligned in an optimal orientation, selectively reinforced with continuous fiber, printed simultaneously and, finally, assembled into a composite part with substantially improved performance.

Design/methodology/approach

Several candidate parts were selected for co-part decomposition. They were printed as standard fused filament fabrication plastic parts, parts reinforced with continuous fiber in one plane and co-part assemblies both with and without continuous fiber reinforcement (CFR). All parts were loaded until failure. Additionally, parts representative of common suboptimally oriented features (“unit tests”) were similarly printed and tested.

Findings

CFR delivered substantial improvement over unreinforced plastic-only parts in both standard parts and co-part assemblies, as expected. Reinforced parts held up to 2.5x the ultimate load of equivalent plastic-only parts. The co-part strategy delivered even greater improvement, particularly when also reinforced with continuous fiber. Plastic-only co-part assemblies held up to 3.2x the ultimate load of equivalent plastic only parts. Continuous fiber reinforced co-part assemblies held up to 6.4x the ultimate load of equivalent plastic-only parts. Additionally, the thought process behind general co-part design is explored and a vision of simulation-driven automated co-part implementation is discussed.

Originality/value

This technique is a novel way to overcome one of the most common challenges preventing the functional use of additively manufactured parts. It delivers compelling performance with continuous carbon fiber reinforcement in 3D printed parts. Further study could extend the technique to any anisotropic manufacturing method, additive or otherwise.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 9 December 2022

Itziar Rekalde-Rodríguez, Pilar Gil-Molina and Esther Cruz Iglesias

The purpose of this paper is to examine the design of choreographies or learning environments which the students participating in Ocean i3 pass through during their participation…

1245

Abstract

Purpose

The purpose of this paper is to examine the design of choreographies or learning environments which the students participating in Ocean i3 pass through during their participation in the project, which requires constant review and interpretation, in times of COVID-19. To this end, it is proposed to: define the institutional teaching choreographies to create authentic and meaningful environments for the active learning of university students; interpret the transversal competences for the sustainability developed in Ocean i3 within the framework of institutional teaching choreographies; and value the strengths and weaknesses of the teaching choreographies implemented for the development of transversal competences for sustainability in a situation of health-care crisis.

Design/methodology/approach

An exploratory method with an interpretative approach has been selected that enables us to address living and evolving scenarios, didactic choreographies and the development of competences for sustainability.

Findings

The perception of students and teachers reveals that it is the use of a multilingual linguistic repertoire (multilingualism) that is most enhanced in Ocean i3, although the global and integrative vision of problems and the integration and management of knowledge through contributions from different disciplines and the social context (transdisciplinarity) are also highlighted.

Originality/value

This paper describes how face-to-face institutional teaching choreographies for an innovation project have been transformed into synchronous online choreographies encouraging the development of competences for sustainability.

Details

International Journal of Sustainability in Higher Education, vol. 24 no. 9
Type: Research Article
ISSN: 1467-6370

Keywords

Open Access
Article
Publication date: 7 July 2021

Dominique Santini and Holly Henderson

Purpose: The purpose of this paper is to consolidate knowledge and benchmark the progress being made across the 32 International Federations (IFs) in the Summer Olympic…

Abstract

Purpose: The purpose of this paper is to consolidate knowledge and benchmark the progress being made across the 32 International Federations (IFs) in the Summer Olympic Programme.

Design/methodology/approach: A website content analysis, analytical hierarchy of information, and social media research was conducted to triangulate the barriers and drivers of environmental sustainability (ES) progress. This data was then analysed to empirically substantiate the findings of previous methods by exploring potential drivers of IF ES progress and communication and refining the ranking of IF ES progress.

Results and findings: World Sailing is by far the most advanced IF in terms of ES progress, followed by World Athletics. Only 4 out of 32 have any sort of strategic ES plans. Only golf, surfing, football, sailing, and hockey have received any academic attention. There is a significant lack of understanding of environmental practices across sport, and their drivers/barriers. There is limited accountability with regards to ES progress and activities throughout the Olympic Movement. This has resulted in uneven diffusion of environmental activities.

Originality: This paper is a new contribution to sport management and ES literature. It provides a benchmark of understanding for ES in the Summer Olympic Programme for the first time using a hierarchy of information to ground results. The exploration and comparison of the perspectives of separate sports adds to the paper's originality.

Details

Emerald Open Research, vol. 1 no. 4
Type: Research Article
ISSN: 2631-3952

Keywords

Open Access
Article
Publication date: 8 November 2022

Jacob Mhlanga, Theodore C. Haupt and Claudia Loggia

This paper aims to explore the intellectual structure shaping the circular economy (CE) discourse within the built environment in Africa.

1727

Abstract

Purpose

This paper aims to explore the intellectual structure shaping the circular economy (CE) discourse within the built environment in Africa.

Design/methodology/approach

The study adopted a bibliometric analysis approach to explore the intellectual structure of CE in the built environment in Africa. The authors collected 31 papers published between 2005 and 2021 from the Scopus database and used VOSviewer for data analysis.

Findings

The findings show that there are six clusters shaping the intellectual structure: demolition, material recovery and reuse; waste as a resource; cellulose and agro-based materials; resilience and low-carbon footprint; recycling materials; and the fourth industrial revolution. The two most cited scholars had three publications each, while the top journal was Resources, Conservation and Recycling. The dominant concepts included CE, sustainability, alternative materials, waste management, lifecycle, demolition and climate change. The study concludes that there is low CE research output in Africa, which implies that the concept is either novel or facing resistance.

Research limitations/implications

The data were drawn from one database, Scopus; hence, adoption of alternative databases such as Web of Science, Google Scholar and Dimensions could potentially have yielded a higher number of articles for analysis which potentially would result in different conclusions on the subject understudy.

Originality/value

This study made a significant contribution by articulating the CE intellectual structure in the built environment, identified prominent scholars and academic platforms responsible for promoting circularity in Africa.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 22 April 2020

David Ness

While most efforts to combat climate change are focussed on energy efficiency and substitution of fossil fuels, growth in the built environment remains largely unquestioned. Given…

Abstract

While most efforts to combat climate change are focussed on energy efficiency and substitution of fossil fuels, growth in the built environment remains largely unquestioned. Given the current climate emergency and increasing scarcity of global resources, it is imperative that we address this “blind spot” by finding ways to support required services with less resource consumption.

There is now long overdue recognition to greenhouse gas emissions “embodied” in the production of building materials and construction, and its importance in reaching targets of net zero carbon by 2050. However, there is a widespread belief that we can continue to “build big”, provided we incorporate energy saving measures and select “low carbon materials” – ignoring the fact that excessive volume and area of buildings may outweigh any carbon savings. This is especially the case with commercial real estate.

As the inception and planning phases of projects offer most potential for reduction in both operational and embodied carbon, we must turn our attention to previously overlooked options such as “build nothing” or “build less”. This involves challenging the root cause of the need, exploring alternative approaches to meet desired outcomes, and maximising the use of existing assets. If new build is required, this should be designed for adaptability, with increased stewardship, so the building stock of the future will be a more valuable and useable resource.

This points to the need for increased understanding and application of the principles of strategic asset management, hitherto largely ignored in sustainability circles, which emphasize a close alignment of assets with the services they support.

Arguably, as the built environment consumes more material resources and energy than any other sector, its future configuration may be critical to the future of people and the planet. In this regard, this paper seeks to break new ground for deeper exploration.

Open Access
Article
Publication date: 21 December 2022

Milad Shabanian and Nicole Leo Braxtan

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled…

Abstract

Purpose

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled connections and CLT beams at ambient temperature (AT), after and during non-standard fire exposure.

Design/methodology/approach

The first set of experiments was performed as a benchmark to find the load-carrying capacity of the assembly and investigate the failure modes at AT. The post-fire performance (PFP) test was performed to investigate the residual strength of the assembly after 30-min exposure to a non-standard fire. The fire-performance (FP) test was conducted to investigate the thermo-mechanical behavior of the loaded assembly during non-standard fire exposure. In this case, the assembly was loaded to 67% of AT load-carrying capacity and partially exposed to a non-standard fire for 75 min.

Findings

Embedment failure and plastic deformation of the dowels in the beam were the dominant failure modes at AT. The load-carrying capacity of the assembly was reduced to 45% of the ambient capacity after 30 min of fire exposure. Plastic bending of the dowels was the principal failure mode, with row shear in the mid-layer of the CLT beam and tear-out failure of the header sides also observed. During the FP test, ductile embedment failure of the timber in contact with the dowels was the major failure mode at elevated temperature.

Originality/value

This paper presents for the first time the thermo-mechanical performance of CLT beam-to-girder connections at three different thermal conditions. For this purpose, the outside layers of the CLT beams were aligned horizontally.

Highlights

  1. Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

  2. Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

  3. Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 28 November 2023

Sérgio Kannebley Júnior, Diogo de Prince and Daniel Quinaud Pedron da Silva

Brazil uses the dollar as a vehicle currency to invoice its exports. This fact produces a tendency toward equalizing the prices of products in dollars in the international market…

Abstract

Purpose

Brazil uses the dollar as a vehicle currency to invoice its exports. This fact produces a tendency toward equalizing the prices of products in dollars in the international market and reducing the ability of firms to practice pricing-to-market (PTM). This study aims to evaluate the hypothesis by estimating error correction models in panel data, obtaining estimates of PTM for 25 manufacturing products exported by Brazil between 2010 and 2020.

Design/methodology/approach

This study uses the correlated common effect estimator proposed by Pesaran (2006) and Chudik and Pesaran (2015b) to estimate the PTM coefficients.

Findings

Results of this study indicate that exporters practice local-currency pricing stability for dollar prices. This study obtains that Brazilian exporters tend to stabilize their dollar price for exports, reducing heterogeneity between destination markets. The results are in agreement with the hypothesis of the prevalence of the coalescing effect of Goldberg and Tille (2008) and lower sensitivity of the markup adjustment to the specific market, as pointed out by Corsetti et al. (2018). The pricing of Brazilian exports in dollars reflects a profit maximization strategy that considers an international price system based on global demand for products.

Originality/value

In addition to analyzing the dollar role in the pricing of Brazilian exports through the triangular decomposition, this study also shows the importance of examining the cross-section dependence of errors, considering the heterogeneous cointegration in export pricing models and producing PTM estimates for short-term and long-term.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

Access

Only Open Access

Year

Last 12 months (9)

Content type

1 – 9 of 9