Search results

1 – 10 of 173
Open Access
Article
Publication date: 5 October 2023

Babitha Philip and Hamad AlJassmi

To proactively draw efficient maintenance plans, road agencies should be able to forecast main road distress parameters, such as cracking, rutting, deflection and International…

Abstract

Purpose

To proactively draw efficient maintenance plans, road agencies should be able to forecast main road distress parameters, such as cracking, rutting, deflection and International Roughness Index (IRI). Nonetheless, the behavior of those parameters throughout pavement life cycles is associated with high uncertainty, resulting from various interrelated factors that fluctuate over time. This study aims to propose the use of dynamic Bayesian belief networks for the development of time-series prediction models to probabilistically forecast road distress parameters.

Design/methodology/approach

While Bayesian belief network (BBN) has the merit of capturing uncertainty associated with variables in a domain, dynamic BBNs, in particular, are deemed ideal for forecasting road distress over time due to its Markovian and invariant transition probability properties. Four dynamic BBN models are developed to represent rutting, deflection, cracking and IRI, using pavement data collected from 32 major road sections in the United Arab Emirates between 2013 and 2019. Those models are based on several factors affecting pavement deterioration, which are classified into three categories traffic factors, environmental factors and road-specific factors.

Findings

The four developed performance prediction models achieved an overall precision and reliability rate of over 80%.

Originality/value

The proposed approach provides flexibility to illustrate road conditions under various scenarios, which is beneficial for pavement maintainers in obtaining a realistic representation of expected future road conditions, where maintenance efforts could be prioritized and optimized.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 December 2023

Mohammad Hosein Madihi, Ali Akbar Shirzadi Javid and Farnad Nasirzadeh

In traditional Bayesian belief networks (BBNs), a large amount of data are required to complete network parameters, which makes it impractical. In addition, no systematic method…

Abstract

Purpose

In traditional Bayesian belief networks (BBNs), a large amount of data are required to complete network parameters, which makes it impractical. In addition, no systematic method has been used to create the structure of the BBN. The aims of this study are to: (1) decrease the number of questions and time and effort required for completing the parameters of the BBN and (2) present a simple and apprehensible method for creating the BBN structure based on the expert knowledge.

Design/methodology/approach

In this study, by combining the decision-making trial and evaluation laboratory (DEMATEL), interpretive structural modeling (ISM) and BBN, a model is introduced that can form the project risk network and analyze the impact of risk factors on project cost quantitatively based on the expert knowledge. The ranked node method (RNM) is then used to complete the parametric part of the BBN using the same data obtained from the experts to analyze DEMATEL.

Findings

Compared to the traditional BBN, the proposed method will significantly reduce the time and effort required to elicit network parameters and makes it easy to create a BBN structure. The results obtained from the implementation of the model on a mass housing project showed that considering the identified risk factors, the cost overruns relating to material, equipment, workforce and overhead cost were 37.6, 39.5, 42 and 40.1%, respectively.

Research limitations/implications

Compared to the traditional BBN, the proposed method will significantly reduce the time and effort required to elicit network parameters and makes it easy to create a BBN structure. The results obtained from the implementation of the model on a mass housing project showed that considering the identified risk factors, the cost overruns relating to material, equipment, workforce and overhead cost were 37.6, 39.5, 42 and 40.1%, respectively. The obtained results are based on a single case study project and may not be readily generalizable.

Originality/value

The presented framework makes the BBN more practical for quantitatively assessing the impact of risk on project costs. This helps to manage financial issues, which is one of the main reasons for project bankruptcy.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 October 2023

Muhammad Saiful Islam, Madhav Nepal and Martin Skitmore

Power plant projects are very complex and encounter serious cost overruns worldwide. Their cost overrun risks are not independent but interrelated in many cases, having structural…

Abstract

Purpose

Power plant projects are very complex and encounter serious cost overruns worldwide. Their cost overrun risks are not independent but interrelated in many cases, having structural relationships among each other. The purpose of this study is, therefore, to establish the complex structural relationships of risks involved.

Design/methodology/approach

In total, 76 published articles from the previous literature are reviewed using the content analysis method. Three risk networks in different phases of power plant projects are depicted based on literature review and case studies. The possible methods of solving these risk networks are also discussed.

Findings

The study finds critical cost overrun risks and develops risk networks for the procurement, civil and mechanical works of power plant projects. It identifies potential models to assess cost overrun risks based on the developed risk networks. The literature review also revealed some research gaps in the cost overrun risk management of power plants and similar infrastructure projects.

Practical implications

This study will assist project risk managers to understand the potential risks and their relationships to prevent and mitigate cost overruns for future power plant projects. It will also facilitate decision-makers developing a risk management framework and controlling projects’ cost overruns.

Originality/value

The study presents conceptual risk networks in different phases of power plant projects for comprehending the root causes of cost overruns. A comparative discussion of the relevant models available in the literature is presented, where their potential applications, limitations and further improvement areas are discussed to solve the developed risk networks for modeling cost overrun risks.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 9 September 2022

Siavash Ghorbany, Saied Yousefi and Esmatullah Noorzai

Being an efficient mechanism for the value of money, public–private partnership (PPP) is one of the most prominent approaches for infrastructure construction. Hence, many…

333

Abstract

Purpose

Being an efficient mechanism for the value of money, public–private partnership (PPP) is one of the most prominent approaches for infrastructure construction. Hence, many controversies about the performance effectiveness of these delivery systems have been debated. This research aims to develop a novel performance management perspective by revealing the causal effect of key performance indicators (KPIs) on PPP infrastructures.

Design/methodology/approach

The literature review was used in this study to extract the PPPs KPIs. Experts’ judgment and interviews, as well as questionnaires, were designed to obtain data. Copula Bayesian network (CBN) has been selected to achieve the research purpose. CBN is one of the most potent tools in statistics for analyzing the causal relationship of different elements and considering their quantitive impact on each other. By utilizing this technique and using Python as one of the best programming languages, this research used machine learning methods, SHAP and XGBoost, to optimize the network.

Findings

The sensitivity analysis of the KPIs verified the causation importance in PPPs performance management. This study determined the causal structure of KPIs in PPP projects, assessed each indicator’s priority to performance, and found 7 of them as a critical cluster to optimize the network. These KPIs include innovation for financing, feasibility study, macro-environment impact, appropriate financing option, risk identification, allocation, sharing, and transfer, finance infrastructure, and compliance with the legal and regulatory framework.

Practical implications

Identifying the most scenic indicators helps the private sector to allocate the limited resources more rationally and concentrate on the most influential parts of the project. It also provides the KPIs’ critical cluster that should be controlled and monitored closely by PPP project managers. Additionally, the public sector can evaluate the performance of the private sector more accurately. Finally, this research provides a comprehensive causal insight into the PPPs’ performance management that can be used to develop management systems in future research.

Originality/value

For the first time, this research proposes a model to determine the causal structure of KPIs in PPPs and indicate the importance of this insight. The developed innovative model identifies the KPIs’ behavior and takes a non-linear approach based on CBN and machine learning methods while providing valuable information for construction and performance managers to allocate resources more efficiently.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 October 2022

Libiao Bai, Shuyun Kang, Kaimin Zhang, Bingbing Zhang and Tong Pan

External stakeholder risks (ESRs) caused by unfavorable behaviors hinder the success of project portfolios (PPs). However, due to complex project dependency and numerous risk…

328

Abstract

Purpose

External stakeholder risks (ESRs) caused by unfavorable behaviors hinder the success of project portfolios (PPs). However, due to complex project dependency and numerous risk causality in PPs, assessing ESRs is difficult. This research aims to solve this problem by developing an ESR-PP two-layer fuzzy Bayesian network (FBN) model.

Design/methodology/approach

A two-layer FBN model for evaluating ESRs with risk causality and project dependency is proposed. The directed acyclic graph (DAG) of an ESR-PP network is first constructed, and the conditional probability tables (CPTs) of the two-layer network are further presented. Next, based on the fuzzy Bayesian network, key variables and the impact of ESRs are assessed and analyzed by using GeNIe2.3. Finally, a numerical example is used to demonstrate and verify the application of the proposed model.

Findings

The proposed model is a useable and effective approach for ESR assessment while considering risk causality and project dependency in PPs. The impact of ESRs on PP can be calculated to determine whether to control risk, and the most critical and heavily contributing risks and project(s) in the developed model are identified based on this.

Originality/value

This study extends prior research on PP risk in terms of stakeholders. ESRs that have received limited attention in the past are explored from an interaction perspective in the PP domain. A new two-layer FBN model considering risk causality and project dependency is proposed, which can synthesize different dependencies between projects.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 4 April 2024

Richard Kadan, Temitope Seun Omotayo, Prince Boateng, Gabriel Nani and Mark Wilson

This study aimed to address a gap in subcontractor management by focusing on previously unexplored complexities surrounding subcontractor management in developing countries. While…

Abstract

Purpose

This study aimed to address a gap in subcontractor management by focusing on previously unexplored complexities surrounding subcontractor management in developing countries. While past studies concentrated on selection and relationships, this study delved into how effective subcontractor management impacts project success.

Design/methodology/approach

This study used the Bayesian Network analysis approach, through a meticulously developed questionnaire survey refined through a piloting stage involving experienced industry professionals. The survey was ultimately distributed among participants based in Accra, Ghana, resulting in a response rate of approximately 63%.

Findings

The research identified diverse components contributing to subcontractor disruptions, highlighted the necessity of a clear regulatory framework, emphasized the impact of financial and leadership assessments on performance, and underscored the crucial role of main contractors in Integrated Project and Labour Cost Management with Subcontractor Oversight and Coordination.

Originality/value

Previous studies have not considered the challenges subcontractors face in projects. This investigation bridges this gap from multiple perspectives, using Bayesian network analysis to enhance subcontractor management, thereby contributing to the successful completion of construction projects.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 29 November 2023

Na Zhang, Haiyan Wang and Zaiwu Gong

Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of…

Abstract

Purpose

Grey target decision-making serves as a pivotal analytical tool for addressing dynamic multi-attribute group decision-making amidst uncertain information. However, the setting of bull's eye is frequently subjective, and each stage is considered independent of the others. Interference effects between each stage can easily influence one another. To address these challenges effectively, this paper employs quantum probability theory to construct quantum-like Bayesian networks, addressing interference effects in dynamic multi-attribute group decision-making.

Design/methodology/approach

Firstly, the bull's eye matrix of the scheme stage is derived based on the principle of group negotiation and maximum satisfaction deviation. Secondly, a nonlinear programming model for stage weight is constructed by using an improved Orness measure constraint to determine the stage weight. Finally, the quantum-like Bayesian network is constructed to explore the interference effect between stages. In this process, the decision of each stage is regarded as a wave function which occurs synchronously, with mutual interference impacting the aggregate result. Finally, the effectiveness and rationality of the model are verified through a public health emergency.

Findings

The research shows that there are interference effects between each stage. Both the dynamic grey target group decision model and the dynamic multi-attribute group decision model based on quantum-like Bayesian network proposed in this paper are scientific and effective. They enhance the flexibility and stability of actual decision-making and provide significant practical value.

Originality/value

To address issues like stage interference effects, subjective bull's eye settings and the absence of participative behavior in decision-making groups, this paper develops a grey target decision model grounded in group negotiation and maximum satisfaction deviation. Furthermore, by integrating the quantum-like Bayesian network model, this paper offers a novel perspective for addressing information fusion and subjective cognitive biases during decision-making.

Details

Grey Systems: Theory and Application, vol. 14 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 October 2023

Jie Lu, Desheng Wu, Junran Dong and Alexandre Dolgui

Credit risk evaluation is a crucial task for banks and non-bank financial institutions to support decision-making on granting loans. Most of the current credit risk methods rely…

Abstract

Purpose

Credit risk evaluation is a crucial task for banks and non-bank financial institutions to support decision-making on granting loans. Most of the current credit risk methods rely solely on expert knowledge or large amounts of data, which causes some problems like variable interactions hard to be identified, models lack interpretability, etc. To address these issues, the authors propose a new approach.

Design/methodology/approach

First, the authors improve interpretive structural model (ISM) to better capture and utilize expert knowledge, then combine expert knowledge with big data and the proposed fuzzy interpretive structural model (FISM) and K2 are used for expert knowledge acquisition and big data learning, respectively. The Bayesian network (BN) obtained is used for forward inference and backward inference. Data from Lending Club demonstrates the effectiveness of the proposed model.

Findings

Compared with the mainstream risk evaluation methods, the authors’ approach not only has higher accuracy and better presents the interaction between risk variables but also provide decision-makers with the best possible interventions in advance to avoid defaults in the financial field. The credit risk assessment framework based on the proposed method can serve as an effective tool for relevant policymakers.

Originality/value

The authors propose a novel credit risk evaluation approach, namely FISM-K2. It is a decision support method that can improve the ability of decision makers to predict risks and intervene in advance. As an attempt to combine expert knowledge and big data, the authors’ work enriches the research on financial risk.

Details

Industrial Management & Data Systems, vol. 123 no. 12
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 9 November 2022

Mukesh M.S., Yashwant B. Katpatal and Digambar S. Londhe

Recently, the serviceability of the transportation infrastructure in urban areas has become crucial. Any impact of the hazardous conditions on the urban road network causes…

Abstract

Purpose

Recently, the serviceability of the transportation infrastructure in urban areas has become crucial. Any impact of the hazardous conditions on the urban road network causes significant disruption to the functioning of the urban region, making the city’s resilience a point of concern. Thereby, the purpose of the study is to examine the city’s recovery capacity to absorb the impacts of adverse events like urban floods.

Design/methodology/approach

This study examines the road network resilience for an urban flood event for zones proposed by the Municipal Corporation to develop multiple central business districts. This study proposes a novel approach to measure the resilience of road networks in an urban region under floods caused due to heavy rainfall. A novel Road Network Resilience Index (RNRI) based on the serviceability of the road network during floods is proposed, estimated using Analytic Hierarchy Process - Multiple Criteria Evaluation (AHP-MCE) approaches by using the change in street centrality, impervious area and road network density. This study examines and analyses the resilience of road networks in two conditions: flood and nonflood conditions. Resilience was estimated for both the conditions at the city level and the decentralized zone level.

Findings

Based on RNRI values, this study identifies zones having a lower or higher resilience index. The central, southern and eastern zones have lower road network resilience and western and northern zones have high road network resilience.

Practical implications

The proposed methodology can be used to increase road network resilience within the city under flood conditions.

Originality/value

The previous literature on road network resilience concentrates on the physical properties of roads after flood events. This study demonstrates the use of nonstructural measures to improve the resilience of the road network by innovatively using the AHP-MCE approach and street centrality to measure the resilience of the road network.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

1 – 10 of 173