Search results

1 – 10 of over 17000
Article
Publication date: 1 November 2023

Ahmed M. E. Bayoumi

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester-conjugate transpose matrix equations (CSCTME) with two unknowns.

Abstract

Purpose

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester-conjugate transpose matrix equations (CSCTME) with two unknowns.

Design/methodology/approach

This article proposes a RGI algorithm to solve CSCTME with two unknowns.

Findings

The introduced (RGI) algorithm is more efficient than the gradient iterative (GI) algorithm presented in Bayoumi (2014), where the author's method exhibits quick convergence behavior.

Research limitations/implications

The introduced (RGI) algorithm is more efficient than the GI algorithm presented in Bayoumi (2014), where the author's method exhibits quick convergence behavior.

Practical implications

In systems and control, Lyapunov matrix equations, Sylvester matrix equations and other matrix equations are commonly encountered.

Social implications

In systems and control, Lyapunov matrix equations, Sylvester matrix equations and other matrix equations are commonly encountered.

Originality/value

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester conjugate transpose matrix equations (CSCTME) with two unknowns. For any initial matrices, a sufficient condition is derived to determine whether the proposed algorithm converges to the exact solution. To demonstrate the effectiveness of the suggested method and to compare it with the gradient-based iterative algorithm proposed in [6] numerical examples are provided.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 July 2023

Xin Su, Eburilitu Bai and Guojun Hai

A unified framework for solving the bending, buckling and vibration problems of rectangular thin plates (RTPs) with four free edges (FFFF), including isotropic RTPs, orthotropic…

Abstract

Purpose

A unified framework for solving the bending, buckling and vibration problems of rectangular thin plates (RTPs) with four free edges (FFFF), including isotropic RTPs, orthotropic rectangular thin plates (ORTPs) and nano-rectangular plates, is established by using the symplectic superposition method (SSM).

Design/methodology/approach

The original fourth-order partial differential equation is first rewritten into Hamiltonian system. The class of boundary value problems of the original equation is decomposed into three subproblems, and each subproblem is given the corresponding symplectic eigenvalues and symplectic eigenvectors by using the separation variable method in Hamiltonian system. The symplectic orthogonality and completeness of symplectic eigen-vectors are proved. Then, the symplectic eigenvector expansion method is applied to solve the each subproblem. Then, the symplectic superposition solution of the boundary value problem of the original fourth-order partial differential equation is given through superposing analytical solutions of three foundation plates.

Findings

The bending, vibration and buckling problems of the rectangular nano-plate/isotropic rectangular thin plate/orthotropic rectangular thin plate with FFFF can be solved by the unified symplectic superposition solution respectively.

Originality/value

The symplectic superposition solution obtained is a reference solution to verify the feasibility of other methods. At the same time, it can be used for parameter analysis to deeply understand the mechanical behavior of related RTPs. The advantages of this method are as follows: (1) It provides a systematic framework for solving the boundary value problem of a class of fourth-order partial differential equations. It is expected to solve more complicated boundary value problems of partial differential equations. (2) SSM uses series expansion of symplectic eigenvectors to accurately describe the solution. Moreover, symplectic eigenvectors are orthogonal and directly reflect the orthogonal relationship of vibration modes. (3) The SSM can be carried to bending, buckling and free vibration problems of the same plate with other boundary conditions.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 June 2022

Sreenadh Sreedharamalle, Sumalatha Baina and Srinivas A.N.S.

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Abstract

Purpose

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Design/methodology/approach

A mathematical model was considered for this study to describe the flow characteristics of two-layered non- Newtonian Jeffrey fluids in an elastic tube. Because Jeffrey fluid model is a better model for the description of physiological fluid motion. Further, this model is a significant generalization of Newtonian fluid model. Analytical expressions for flux, stream functions, velocities and interface velocity have been derived in terms of elastic parameters, inlet, outlet and external pressures. The effects of various pertinent parameters on the flow behavior have been studied.

Findings

The volumetric flow rate was calculated by different models of Mazumdar (1992) and Rubinow and Keller (1972); from this it was found that the flux of Jeffrey fluid is more in the case of Rubinow and Keller model than Mazumdar. A comparative study is made between single-fluid and two-fluid models of Jeffrey fluid flows and it was observed that more flux and higher velocities were observed in the case of two-fluid model rather than single-fluid model. Furthermore, when both the Jeffrey parameter tends to zero and ratios of viscosities and radii are unity, the results in this study agree with those of Rubinow and Keller (1972).

Originality/value

To describe the fluid flow in an elastic tube with two-layered systems, the models and solutions developed here are very important. These results will be highly suitable in analyzing the rheological characteristics of blood flow in a small blood vessel because of their elastic nature.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 June 2023

Prashant Kumar Choudhary

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Abstract

Purpose

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Design/methodology/approach

A novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.

Findings

The optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.

Originality/value

The proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 July 2023

Yijie Zhang, Ling Ma, Ziyi Guo, Tao Li and Fengyuan Zou

Considering only two-dimensional (2D) ease allowance cannot fully reflect the three-dimensional (3D) relationship between the position of clothing and the human body. The purpose…

Abstract

Purpose

Considering only two-dimensional (2D) ease allowance cannot fully reflect the three-dimensional (3D) relationship between the position of clothing and the human body. The purpose of this paper is to propose a method with a 3D space vector and corresponding distance ease to characterize fitting garments and then used to construct personalized clothing for similar shape body.

Design/methodology/approach

Firstly, a 3D scanner was used to obtain mannequin and fitted garment data, and 17 layers of cross-sections of the upper body were extracted. Then, 37 space vectors and corresponding space angles on each cross-section were obtained with the original point. Secondly, the detailed distance ease between the mannequin and garment was constructed due to the difference between garment vectors and body vectors. Thirdly, the distance ease mathematical models were achieved and used to calculate distance ease on a similar shape body. Additionally, the fit garment is constructed, and the garment pattern is altered by the geometric pattern alteration method.

Findings

The results show that 3D space vectors can explain the relationship between body skin and garment surface of the upper body properly. The distance ease is modeled by mathematic expressions and successfully used to make a new garment to fit a similar shape body.

Originality/value

The proposed method of constructing garments based on distance ease and 3D space vectors can create a fitted garment for a similar shape body effectively and accurately. It is useful for the personalized garment design and suitable for the manufacturing process.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 July 2023

Hongyue Zhao, Chuang Shi, Hongwei Guo and Rongqiang Liu

In order to make the aperture of spatial deployable antenna larger, this paper proposed the study on a spatial annular tensegrity structure with 100 m large scale, which could be…

Abstract

Purpose

In order to make the aperture of spatial deployable antenna larger, this paper proposed the study on a spatial annular tensegrity structure with 100 m large scale, which could be one of the ideal solutions to improve the dimension of the antenna. This study is aiming to figure out the dynamic characteristic of ultra-large annular tensegrity and address the problem of insufficient rigidity with local modes that many ring truss-type deployable antenna structures have faced.

Design/methodology/approach

This work is carried out based on the nonlinear dynamic modelling when fully considering the effect of bending and torsion deformation of beams, as well as the pretension of cables. Additionally, the structural stability analysis based on the proposed stability criterion is also presented to evaluate the tensegrity configuration with different distribution of cable groups.

Findings

This research results verify that the modified structure with radial ribs could eliminate the effect of the local vibration mode on stiffness and is suitable to meet the requirements of the annular tensegrity structure. Additionally, the calculation results demonstrate that the structural configuration of annular tensegrity with 36 groups of cables which share the nodes with radial ribs is more appropriate to enhance the stiffness and structural stability.

Originality/value

A new large annular tensegrity structure with radial ribs and tensioned cables is proposed. Based on the proposed structural configuration, the positive definiteness of the tangent stiffness matrix is carried out as the criterion of stability and the composition of the analytical expression of the tangent stiffness matrix is analyzed. Four levels of tensegrity structure stability have been carried out and the influence of the structural parameters on the stability and the rigidity has been analyzed. A scaled-down prototype is developed to verify the feasibility of the design of the hoop-column-rib configuration by the deployment and dynamic experiment.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 October 2023

Vipin Gupta and M.S. Barak

This study aims to examine the impacts of higher memory dependencies on a novel semiconductor material that exhibits generalized photo-piezo-thermo-elastic properties…

Abstract

Purpose

This study aims to examine the impacts of higher memory dependencies on a novel semiconductor material that exhibits generalized photo-piezo-thermo-elastic properties. Specifically, the research focuses on analyzing the behavior of the semiconductor under three distinct temperature models.

Design/methodology/approach

The study assumes a homogeneous and orthotropic piezo-semiconductor medium during photo-thermal excitation. The field equations have been devised to encompass higher order parameters, temporal delays and a specifically tailored kernel function to address the problem. The eigenmode technique is used to solve these equations and derive analytical expressions.

Findings

The research presents graphical representations of the physical field distribution across different temperatures, higher order plasma heat conduction models and time. The results reveal that the amplitude of the distribution profile is markedly affected by factors such as the memory effect, time, conductive temperature and spatial coordinates. These factors cannot be overlooked in the analysis and design of the semiconductor.

Research limitations/implications

Specific cases are also discussed in detail, offering the potential to advance the creation of precise models and facilitate future simulations.

Practical implications

The research offers valuable information on the physical field distribution across various temperatures, allowing engineers and designers to optimize the design of semiconductor devices. Understanding the impact of memory effect, time, conductive temperature and spatial coordinates enables device performance and efficiency improvement.

Originality/value

This manuscript is the result of the joint efforts of the authors, who independently initiated and contributed equally to this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 July 2023

Rachaita Dutta, Soumik Das, Shishir Gupta, Aditi Singh and Harsh Chaudhary

The purpose of this study is to analyze the thermo-diffusion process in a semi-infinite nonlocal fiber-reinforced double porous thermoelastic diffusive material with voids…

Abstract

Purpose

The purpose of this study is to analyze the thermo-diffusion process in a semi-infinite nonlocal fiber-reinforced double porous thermoelastic diffusive material with voids (FRDPTDMWV) in light of the fractional-order Lord–Shulman thermo-elasto-diffusion (LSTED) model. By virtue of Eringen’s nonlocal elasticity theory, the governing equations for the considered material are developed. The free surface of the substrate is governed by the inclined mechanical load and thermal and chemical shocks.

Design/methodology/approach

With the aid of the normal mode technique, the solutions of the nondimensional coupled governing equations have been obtained.

Findings

The expressions of field variables are obtained analytically. By using MATHEMATICA software, various graphical implementations are presented to describe the impacts of angle of inclination, fractional-order and nonlocality parameters. The present model is also validated on the basis of some comparative studies with some preestablished cases.

Originality/value

As observed from the literature survey, many different studies have been carried out by taking into account the deformation analysis in nonlocal double porous thermoelastic material structures and thermo-mechanical interaction in fiber-reinforced medium under fractional-order thermoelasticity theories. However, to the best of the authors’ knowledge, no research emphasizing the thermo-elasto-diffusive interactions in a nonlocal FRDPTDMWV has been carried out. Moreover, the effect of fractional-order LSTED theory on fiber-reinforced thermoelastic diffusive half-space with double porosity has not been illuminated till now, which significantly defines the novelty of the conducted research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 January 2024

Talwinder Singh

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly…

Abstract

Purpose

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly nanofluid minimum quantity lubrication (NMQL) environment to minimize cutting tool flank wear (Vb) and machined surface roughness (Ra).

Design/methodology/approach

The central composite rotatable design approach under response surface methodology (RSM) is adopted to prepare a design of experiments plan for conducting turning experiments.

Findings

The optimum value of input turning parameters: cutting speed (A), feed rate (B) and depth of cut (C) is found as 79.88 m/min, 0.1 mm/rev and 0.2 mm, respectively, with optimal output response parameters: Vb = 138.633 µm and Ra = 0.462 µm at the desirability level of 0.766. Feed rate: B and cutting speed: A2 are the leading model variables affecting Vb, with a percentage contribution rate of 12.06% and 43.69%, respectively, while cutting speed: A and feed rate: B are the significant factors for Ra, having a percentage contribution of 38.25% and 18.03%, respectively. Results of validation experiments confirm that the error between RSM predicted and experimental observed values for Vb and Ra is 3.28% and 3.75%, respectively, which is less than 5%, thus validating that the formed RSM models have a high degree of conformity with the obtained experimental results.

Practical implications

The outcomes of this research can be used as a reference machining database for various metal cutting industries to establish eco-friendly NMQL practices during the turning of superalloy Inconel 718 to enhance cutting tool performance and machined surface integrity.

Originality/value

No study has been communicated till now on the turning of Inconel 718 under NMQL conditions using olive oil blended with multi-walled carbon nanotubes-based nanofluid.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0317/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Access

Year

Last 12 months (17828)

Content type

Article (17828)
1 – 10 of over 17000