Search results

1 – 10 of over 1000
Article
Publication date: 5 September 2016

Peng Jin, Jian Hua Liu, Shao Li Liu and Xiao Wang

Complicated tubes extensively exist in the industrial equipment. The manufacturing precision of the tubes is difficult to be ensured with bending machine. Therefore, the tubes’ 3D…

Abstract

Purpose

Complicated tubes extensively exist in the industrial equipment. The manufacturing precision of the tubes is difficult to be ensured with bending machine. Therefore, the tubes’ 3D geometric error should be fixed according to measurement results. However, there are no convenient methods to accomplish the measurement accurately and effectively. Thus, this paper aims to propose a new tube measurement method to achieve tube's automatic measurement. The accurate measurement results can be used to fix the geometric error of the tube to achieve stress-free assembly.

Design/methodology/approach

Tubes’ shape can be determined by control points. First, the point clouds of the centre line by multi-stereo-vision technology are reconstructed. Then, the point clouds to the spine of the tube are thinned by moving least-squares and segmented into lines and arcs. Finally, the control points are calculated and the model is reconstructed. The authors can get the tube’s geometric dimensions from the model.

Findings

The experiment results indicate that the multi-stereo-vision technology can solve the occlusion problem and measure the complicated tubes efficiently and accurately.

Originality/value

The paper proposed a tube measurement method. The repeatability measuring precision was 0.12 mm, and the absolute measuring precision was within 0.78 mm. The tube spectra assessed in this paper are in the range of angles between two adjacent line segments of 3-177° and the shortest length of the line segment is greater than 5 mm, confirming that the proposed algorithm can measure various complicated tubes effectively and accurately.

Details

Assembly Automation, vol. 36 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 March 2020

Tianyi Wu, Jian Hua Liu, Shaoli Liu, Peng Jin, Hao Huang and Wei Liu

This paper aims to solve the problem of free-form tubes’ machining errors which are caused by their complex geometries and material properties.

Abstract

Purpose

This paper aims to solve the problem of free-form tubes’ machining errors which are caused by their complex geometries and material properties.

Design/methodology/approach

In this paper, the authors propose a multi-view vision-based method for measuring free-form tubes. The authors apply photogrammetry theory to construct the initial model and then optimize the model using an energy function. The energy function is based on the features of the image of the tube. Solving the energy function allows to use the gray features of the images to reconstruct centerline point clouds and thus obtain the pertinent geometric parameters.

Findings

According to the experiments, the measurement process takes less than 2 min and the precision of the proposed system is 0.2 mm. The authors used simple operations to carry out the measurements, and the process is fully automatic.

Originality/value

This paper proposes a method for measuring free-form tubes based on multi-view vision, which has not been attempted to the best of authors’ knowledge. This method differs from traditional multi-view vision measurement methods, because it does not rely on the data of the design model of the tube. The application of the energy function also avoids the problem of matching corresponding points and thus simplifying the calculation and improving its stability.

Details

Assembly Automation, vol. 40 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 January 2023

Sandeep Rangrao Desai and Mangalsing Narsing Sonare

The prediction of critical velocity at instability threshold for shell and tube heat exchangers is important to avoid failure of tubes as a result of flow-induced vibrations due…

65

Abstract

Purpose

The prediction of critical velocity at instability threshold for shell and tube heat exchangers is important to avoid failure of tubes as a result of flow-induced vibrations due to water cross flow. The flow-induced vibration in finned tube heat exchangers is affected by various parameters such as fin height, fin pitch, fin material, tube array, pitch ratio, fin type, fluid velocity etc. In this paper, an experimental investigation of fluid elastic instability in shell and tube heat exchangers is carried out by subjecting normal square finned tube arrays of pitch ratio 1.79 to water cross flow.

Design/methodology/approach

The five tube arrays, namely plain array, two finned tube arrays with 3 fpi and 9 fpi fin density, and two finned tube arrays with 3 mm and 6 mm fin height are tested in the experimental test setup with water flow loop and vibration measurement system. The research objective is to evaluate the effect of fin density and fin height on the instability threshold. The critical velocity at instability threshold is determined to characterize the fluid elastic instability behavior of different tube arrays. The vortex shedding behavior of the tube arrays is also studied by determining Strouhal number corresponding to the small peaks before fluid elastic instability.

Findings

The fluid elastic instability behavior of the tube arrays was found to be the function of fin tube parameters. The experimental results indicate that an increase in fin density and fin height results in delaying the instability threshold for finned tube arrays. It is also observed that critical velocity at instability is increased for finned tube arrays compared to plain tube arrays of the same pitch ratio. The design modifications in the outer box have resulted in further reduction in the natural frequency. This enabled to reach clear instability for all the five-tube arrays.

Originality/value

The research data add the value to the present body of knowledge by knowing the effect of fin height and fin density on the fluid elastic instability threshold of normal square finned tube arrays subjected to water cross flow.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 April 2011

István Latos and Mihály Janóczki

The purpose of this paper is to develop a new method of evaluating the present state of X‐ray machines used in the electronics device manufacturing industry.

Abstract

Purpose

The purpose of this paper is to develop a new method of evaluating the present state of X‐ray machines used in the electronics device manufacturing industry.

Design/methodology/approach

There are several kinds of failures that can only be detected by means of X‐ray inspection. The capabilities and properties of such machines, however, alter over a period of time. The effects of these changes are rarely published and when they are, the significance and reliability of the results produced depends very much on the state and capabilities of the machines in question.

Findings

The effectiveness and appropriateness of the present methods of calibration have been investigated. The optimization of the prevalence and effectiveness of these calibrations is described. Suggestions are also made as to the necessary adjustments or repairs that are required to reach the ideal optimized state of X‐ray machines. A scientifically substantiated method is also presented that can be efficiently employed in practise during automated X‐ray inspections of electronic devices.

Originality/value

In this paper, a new method of testing automated X‐ray inspection systems is introduced. It is clear that the method currently used by many engineers and inspection system manufacturers is not in itself sufficient, as they do not test grey‐scale and positioning stability in relation to changes that occur over time. Further, there is no evidence that numerical testing of the image quality takes place. Detailed investigations have been carried out to find the best methods to measure these parameters.

Details

Soldering & Surface Mount Technology, vol. 23 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 September 1970

Accles & Pollock Ltd. of Oldbury, Worcestershire, a TI Steel Tube Division company, will be exhibiting a comprehensive range of precision steel tube and tubular products…

Abstract

Accles & Pollock Ltd. of Oldbury, Worcestershire, a TI Steel Tube Division company, will be exhibiting a comprehensive range of precision steel tube and tubular products, including plain, annularly convoluted and thin wall tube, at Farnborough.

Details

Aircraft Engineering and Aerospace Technology, vol. 42 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 28 August 2019

Peng Sun, Naiguang Lu, Mingli Dong, Xiaoping Lou and Zexiang Tan

Geometric structure error of parabolic trough concentrator (PTC) frame affects the installation accuracy of mirrors and absorber tubes and thus decreases the solar energy…

Abstract

Purpose

Geometric structure error of parabolic trough concentrator (PTC) frame affects the installation accuracy of mirrors and absorber tubes and thus decreases the solar energy concentrating efficiency. Until now, there is no effective method to instruct the assembly and regulation of PTC frames. This paper aims to propose a vision guided method for fast and accurate regulation of mirror and absorber supports to improve the geometric quality of PTC frames.

Design/methodology/approach

The PTC frame support regulating system consists of a general-purpose online photogrammetry system, frame support measurement adaptors and data analyzing software. First, the positions and angles of all the supports are measured in real time by the online photogrammetric system. Then, the measured positions and angles are aligned to the design reference frame through the transformation calculated by an absorber position constrained nonlinear optimization so as to get the geometric errors and regulating amounts. Finally, a graduated pseudo-color-based visualization method is proposed to assist the manual or automated regulation of PTC frame supports in site.

Findings

The proposed method does not need to construct a reference system nor specify the rotation attitude of the PTC frame, and it is capable of conducting efficient and accurate regulation on PTC frame assembly line. The method is applied to manual regulation of a light type PTC frame structure. After regulation, the maximum position and angle errors of supports are reduced to less than 0.15 mm and 0.15° respectively and the intercept factor is increased to 97%, which meets the requirement for a qualified PTC concentrator.

Originality/value

To the authors’ knowledge, this paper is the first to propose a vision guided assembly or regulation method for PTC frame structures. The research uses online photogrammetry system to provide real-time geometric quality information feedback, elaborates the data analysis algorithm and provides the visualization method for accurate and efficient in site regulation. Furthermore, this paper also provides theories, methods and experiences for other applications that use vision guidance for attitude regulation and digital flexible assembly of large equipment.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 March 2018

Jiang Chen, Junli Zheng and Feng Xiong

The spatial resolution of seepage monitoring methods based on fiber Bragg grating (FBG) temperature sensing technology is limited by the distance between measurement points…

Abstract

Purpose

The spatial resolution of seepage monitoring methods based on fiber Bragg grating (FBG) temperature sensing technology is limited by the distance between measurement points. Improving the spatial resolution for a given number of measurement points is a prerequisite for popularizing this technology in the seepage monitoring of rockfill dams. The purpose of this paper is to address this problem.

Design/methodology/approach

This paper proposes a mobile-distributed seepage monitoring method based on the FBG-hydrothermal cycling seepage monitoring system. In this method, the positions of the measurement points are changed by freely dragging the FBG sensing cluster within the inner tube of a dual-tube structure, consisting of an inner polytetrafluoroethylene tube and outer polyethylene of raised temperature resistance heating tube.

Findings

A seepage velocity calibration test was carried out using the improved monitoring system. The results showed that under a constant seepage velocity, the use of the dual-tube structure enables faster cooling, and the cooling rate accelerates with an increase in the diameter of the inner tube. The use of the dual-tube structure can improve the sensitivity of the seepage evaluation index ζv to the seepage velocity. When the inner diameter increases, ζv becomes more sensitive to the seepage velocity.

Originality/value

A mobile-distributed seepage monitoring method based on FBG sensing technology is proposed in which the FBG sensors are not fixed. Instead, the positions of the measurement points are changed to improve the spatial resolution. Meanwhile, the use of the dual-tube structure in the presented monitoring system can improve its sensitivity.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 February 1956

J.N. Hool

The report covers an extension of the surface tube technique devised by T. E. Stanton to measure the intensity of skin friction. A simple surface tube is described and a method of…

Abstract

The report covers an extension of the surface tube technique devised by T. E. Stanton to measure the intensity of skin friction. A simple surface tube is described and a method of varying the surface tube calibration curves to cover other fluids and temperatures is developed. An empirical equation is obtained permitting values of the intensity of skin friction to be determined from surface tube static tapping readings and the width of the opening of the surface tube.

Details

Aircraft Engineering and Aerospace Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 2 April 2019

Nda Muhammad, Mohd Shalahuddin Adnan, Mohd Azlan Mohd Yosuff and Kabiru Abdullahi Ahmad

Sediment measurement is usually accessible on a periodic or distinct basis. The measurement of sediment (suspended and bedload), especially in the field, is vital in keeping…

Abstract

Purpose

Sediment measurement is usually accessible on a periodic or distinct basis. The measurement of sediment (suspended and bedload), especially in the field, is vital in keeping essential data of sediment transport and deposition. Various techniques for measuring sediment have been used over time each with its merits and demerits. The techniques discussed in this paper for suspended sediment include bottle, acoustic, pump, laser diffraction, nuclear and optical. Other techniques for bedload measurement are; River bedload trap (RBT), CSU/FU bedload trap, Helley–Smith, Polish Hydrological Services (PIHM) device, pit and trough, vortex tube, radioactive traces and bedload–surrogate technologies. However, the choice of technique depends on multiple factors ranging from budget constraint, availability of equipment, manpower and data requirement. The purpose of this paper is to present valuable information on selected techniques used in sediment measurement, to aid researchers/practitioners in the choice of sediment measurement technique.

Design/methodology/approach

This paper presents a general review of selected field techniques used in sediment measurement (suspended and bedload). Each techniques mode of operation, merits and demerits are discussed.

Findings

This paper highlights that each technique has its peculiar merits and demerits. However, two techniques are generally preferred over others; the bottle sampling and the Helley–Smith sampler for measuring suspended and bedload sediment. This is because the applicability of these techniques is quite widespread and time-tested.

Originality/value

This review paper provides an in-depth description and comparison of selected existing field sediment measurement techniques. The objective is to ease decision-making about the choice of technique, as well as to identify the suitability and applicability of the chosen technique.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 1995

Donald J. Schweibold

Like most modern manufacturing processes, tube bending and inspection is evolving from its “black art” origins. Tube processing has progressed through the use of manual and…

Abstract

Like most modern manufacturing processes, tube bending and inspection is evolving from its “black art” origins. Tube processing has progressed through the use of manual and semiautomatic machinery, mylar templates, set‐up blocks, master samples and attribute gauges. Current production and quality improvements and requirements demand advancing the tube bending process from “art” to “science”. Using a VMM (vector measuring machine) and a computer numerically controlled (CNC) automatic bender advances this science.

Details

Aircraft Engineering and Aerospace Technology, vol. 67 no. 6
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 1000