Search results

1 – 10 of over 1000
Article
Publication date: 30 April 2024

C. Bharanidharan, S. Malathi and Hariprasath Manoharan

The potential of vehicle ad hoc networks (VANETs) to improve driver and passenger safety and security has made them a hot topic in the field of intelligent transportation systems…

Abstract

Purpose

The potential of vehicle ad hoc networks (VANETs) to improve driver and passenger safety and security has made them a hot topic in the field of intelligent transportation systems (ITSs). VANETs have different characteristics and system architectures from mobile ad hoc networks (MANETs), with a primary focus on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. But protecting VANETs from malicious assaults is crucial because they can undermine network security and safety.

Design/methodology/approach

The black hole attack is a well-known danger to VANETs. It occurs when a hostile node introduces phony routing tables into the network, potentially damaging it and interfering with communication. A safe ad hoc on-demand distance vector (AODV) routing protocol has been created in response to this issue. By adding cryptographic features for source and target node verification to the route request (RREQ) and route reply (RREP) packets, this protocol improves upon the original AODV routing system.

Findings

Through the use of cryptographic-based encryption and decryption techniques, the suggested method fortifies the VANET connection. In addition, other network metrics are taken into account to assess the effectiveness of the secure AODV routing protocol under black hole attacks, including packet loss, end-to-end latency, packet delivery ratio (PDR) and routing request overhead. Results from simulations using an NS-2.33 simulator show how well the suggested fix works to enhance system performance and lessen the effects of black hole assaults on VANETs.

Originality/value

All things considered, the safe AODV routing protocol provides a strong method for improving security and dependability in VANET systems, protecting against malevolent attacks and guaranteeing smooth communication between cars and infrastructure.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 5 April 2024

Lida Haghnegahdar, Sameehan S. Joshi, Rohith Yanambaka Venkata, Daniel A. Riley and Narendra B. Dahotre

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems…

19

Abstract

Purpose

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems. Manufacturing systems are increasingly faced with risk of attacks not only by traditional malicious actors such as hackers and cyber-criminals but also by some competitors and organizations engaged in corporate espionage. This paper aims to elaborate a plausible risk practice of designing and demonstrate a case study for the compromised-based malicious for polymer 3D printing system.

Design/methodology/approach

This study assumes conditions when a machine was compromised and evaluates the effect of post compromised attack by studying its effects on tensile dog bone specimens as the printed object. The designed algorithm removed predetermined specific number of layers from the tensile samples. The samples were visually identical in terms of external physical dimensions even after removal of the layers. Samples were examined nondestructively for density. Additionally, destructive uniaxial tensile tests were carried out on the modified samples and compared to the unmodified sample as a control for various mechanical properties. It is worth noting that the current approach was adapted for illustrating the impact of cyber altercations on properties of additively produced parts in a quantitative manner. It concurrently pointed towards the vulnerabilities of advanced manufacturing systems and a need for designing robust mitigation/defense mechanism against the cyber altercations.

Findings

Density, Young’s modulus and maximum strength steadily decreased with an increase in the number of missing layers, whereas a no clear trend was observed in the case of % elongation. Post tensile test observations of the sample cross-sections confirmed the successful removal of the layers from the samples by the designed method. As a result, the current work presented a cyber-attack model and its quantitative implications on the mechanical properties of 3D printed objects.

Originality/value

To the best of the authors’ knowledge, this is the original work from the team. It is currently not under consideration for publication in any other avenue. The paper provides quantitative approach of realizing impact of cyber intrusions on deteriorated performance of additively manufactured products. It also enlists important intrusion mechanisms relevant to additive manufacturing.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2024

Ahmed Shehata and Metwaly Eldakar

Social engineering is crucial in today’s digital landscape. As technology advances, malicious individuals exploit human judgment and trust. This study explores how age, education…

Abstract

Purpose

Social engineering is crucial in today’s digital landscape. As technology advances, malicious individuals exploit human judgment and trust. This study explores how age, education and occupation affect individuals’ awareness, skills and perceptions of social engineering.

Design/methodology/approach

A quantitative research approach was used to survey a diverse demographic of Egyptian society. The survey was conducted in February 2023, and the participants were sourced from various Egyptian social media pages covering different topics. The collected data was analyzed using descriptive and inferential statistics, including independent samples t-test and ANOVA, to compare awareness and skills across different groups.

Findings

The study revealed that younger individuals and those with higher education tend to research social engineering more frequently. Males display a higher level of awareness but score lower in terms of social and psychological consequences as well as types of attacks when compared to females. The type of attack cannot be predicted based on age. Higher education is linked to greater awareness and ability to defend against attacks. Different occupations have varying levels of awareness, skills, and psychosocial consequences. The study emphasizes the importance of increasing awareness, education and implementing cybersecurity measures.

Originality/value

This study’s originality lies in its focus on diverse Egyptian demographics, innovative recruitment via social media, comprehensive exploration of variables, statistical rigor, practical insights for cybersecurity education and diversity in educational and occupational backgrounds.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 26 January 2024

Merly Thomas and Meshram B.B.

Denial-of-service (DoS) attacks develop unauthorized entry to various network services and user information by building traffic that creates multiple requests simultaneously…

Abstract

Purpose

Denial-of-service (DoS) attacks develop unauthorized entry to various network services and user information by building traffic that creates multiple requests simultaneously making the system unavailable to users. Protection of internet services requires effective DoS attack detection to keep an eye on traffic passing across protected networks, freeing the protected internet servers from surveillance threats and ensuring they can focus on offering high-quality services with the fewest response times possible.

Design/methodology/approach

This paper aims to develop a hybrid optimization-based deep learning model to precisely detect DoS attacks.

Findings

The designed Aquila deer hunting optimization-enabled deep belief network technique achieved improved performance with an accuracy of 92.8%, a true positive rate of 92.8% and a true negative rate of 93.6.

Originality/value

The introduced detection approach effectively detects DoS attacks available on the internet.

Details

International Journal of Web Information Systems, vol. 20 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 30 October 2023

Andrzej Krzysiak, Robert Placek, Aleksander Olejnik and Łukasz Kiszkowiak

The main purpose of this study was to determine the basic aerodynamic characteristics of the airliner Tu-154M at the wide range of the overcritical angles of attack and sideslip…

Abstract

Purpose

The main purpose of this study was to determine the basic aerodynamic characteristics of the airliner Tu-154M at the wide range of the overcritical angles of attack and sideslip angles, i.e. α = −900° ÷ 900° and β = −900° ÷ 900°.

Design/methodology/approach

Wind tunnel tests of the Tu-154M aircraft model at the scale 1:20 were performed in a low-speed wind tunnel T-3 by using a six-component internal aerodynamic balance. Several model configurations were also investigated.

Findings

The results of the presented studies showed that at the wide range of the overcritical angles of attack and sideslip angles, i.e. α = −900° ÷ 900° and β = −900° ÷ 900°, the Tu-154M aircraft flap deflection affected the values of the drag and lift coefficients and generally had no major effect on the values of the side force and pitching moment coefficients.

Research limitations/implications

The model vibration which was the result of flow separation at high angles of attack was the wind tunnel test limitation.

Practical implications

Studies of the airliner aerodynamic characteristics at the wide range of the overcritical angles of attack and sideslip angles allow assessment of the aircraft aerodynamic properties during possible unexpected situations when the passenger aircraft is found to have gone beyond the conventional flight envelope.

Social implications

There are no social implications of this study to report.

Originality/value

The presented wind tunnel test results of the airliner aerodynamic characteristics at overcritical angles of attack and sideslip angles is an original contribution to the existing not-too-extensive database available in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 August 2023

Jialiang Xie, Shanli Zhang, Honghui Wang and Mingzhi Chen

With the rapid development of Internet technology, cybersecurity threats such as security loopholes, data leaks, network fraud, and ransomware have become increasingly prominent…

Abstract

Purpose

With the rapid development of Internet technology, cybersecurity threats such as security loopholes, data leaks, network fraud, and ransomware have become increasingly prominent, and organized and purposeful cyberattacks have increased, posing more challenges to cybersecurity protection. Therefore, reliable network risk assessment methods and effective network security protection schemes are urgently needed.

Design/methodology/approach

Based on the dynamic behavior patterns of attackers and defenders, a Bayesian network attack graph is constructed, and a multitarget risk dynamic assessment model is proposed based on network availability, network utilization impact and vulnerability attack possibility. Then, the self-organizing multiobjective evolutionary algorithm based on grey wolf optimization is proposed. And the authors use this algorithm to solve the multiobjective risk assessment model, and a variety of different attack strategies are obtained.

Findings

The experimental results demonstrate that the method yields 29 distinct attack strategies, and then attacker's preferences can be obtained according to these attack strategies. Furthermore, the method efficiently addresses the security assessment problem involving multiple decision variables, thereby providing constructive guidance for the construction of security network, security reinforcement and active defense.

Originality/value

A method for network risk assessment methods is given. And this study proposed a multiobjective risk dynamic assessment model based on network availability, network utilization impact and the possibility of vulnerability attacks. The example demonstrates the effectiveness of the method in addressing network security risks.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 27 September 2022

Souad El Houssaini, Mohammed-Alamine El Houssaini and Jamal El Kafi

In vehicular ad hoc networks (VANETs), the information transmitted is broadcast in a free access environment. Therefore, VANETs are vulnerable against attacks that can directly…

Abstract

Purpose

In vehicular ad hoc networks (VANETs), the information transmitted is broadcast in a free access environment. Therefore, VANETs are vulnerable against attacks that can directly perturb the performance of the networks and then provoke big fall of capability. Black hole attack is an example such attack, where the attacker node pretends that having the shortest path to the destination node and then drops the packets. This paper aims to present a new method to detect the black hole attack in real-time in a VANET network.

Design/methodology/approach

This method is based on capability indicators that are widely used in industrial production processes. If the different capability indicators are greater than 1.33 and the stability ratio (Sr) is greater than 75%, the network is stable and the vehicles are communicating in an environment without the black hole attack. When the malicious nodes representing the black hole attacks are activated one by one, the fall of capability becomes more visible and the network is unstable, out of control and unmanaged, due to the presence of the attacks. The simulations were conducted using NS-3 for the network simulation and simulation of urban mobility for generating the mobility model.

Findings

The proposed mechanism does not impose significant overheads or extensive modifications in the standard Institute of Electrical and Electronics Engineers 802.11p or in the routing protocols. In addition, it can be implemented at any receiving node which allows identifying malicious nodes in real-time. The simulation results demonstrated the effectiveness of proposed scheme to detect the impact of the attack very early, especially with the use of the short-term capability indicators (Cp, Cpk and Cpm) of each performance metrics (throughput and packet loss ratio), which are more efficient at detecting quickly and very early the small deviations over a very short time. This study also calculated another indicator of network stability which is Sr, which allows to make a final decision if the network is under control and that the vehicles are communicating in an environment without the black hole attack.

Originality/value

According to the best of the authors’ knowledge, the method, using capability indicators for detecting the black hole attack in VANETs, has not been presented previously in the literature.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 14 September 2022

Mythili Boopathi, Meena Chavan, Jeneetha Jebanazer J. and Sanjay Nakharu Prasad Kumar

The Denial of Service (DoS) attack is a category of intrusion that devours various services and resources of the organization by the dispersal of unusable traffic, so that…

Abstract

Purpose

The Denial of Service (DoS) attack is a category of intrusion that devours various services and resources of the organization by the dispersal of unusable traffic, so that reliable users are not capable of getting benefit from the services. In general, the DoS attackers preserve their independence by collaborating several victim machines and following authentic network traffic, which makes it more complex to detect the attack. Thus, these issues and demerits faced by existing DoS attack recognition schemes in cloud are specified as a major challenge to inventing a new attack recognition method.

Design/methodology/approach

This paper aims to detect DoS attack detection scheme, termed as sine cosine anti coronavirus optimization (SCACVO)-driven deep maxout network (DMN). The recorded log file is considered in this method for the attack detection process. Significant features are chosen based on Pearson correlation in the feature selection phase. The over sampling scheme is applied in the data augmentation phase, and then the attack detection is done using DMN. The DMN is trained by the SCACVO algorithm, which is formed by combining sine cosine optimization and anti-corona virus optimization techniques.

Findings

The SCACVO-based DMN offers maximum testing accuracy, true positive rate and true negative rate of 0.9412, 0.9541 and 0.9178, respectively.

Originality/value

The DoS attack detection using the proposed model is accurate and improves the effectiveness of the detection.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 23 December 2022

Yu Song, Bingrui Liu, Lejia Li and Jia Liu

In recent years, terrorist attacks have gradually become one of the important factors endangering social security. In this context, this research aims to propose methods and…

Abstract

Purpose

In recent years, terrorist attacks have gradually become one of the important factors endangering social security. In this context, this research aims to propose methods and principles which can be utilized to make effective evacuation plans to reduce casualties in terrorist attacks.

Design/methodology/approach

By analyzing the statistical data of terrorist attack videos, this paper proposes an extended cellular automaton (CA) model and simulates the panic evacuation of the pedestrians in the terrorist attack.

Findings

The main findings are as follows. (1) The panic movement of pedestrians leads to the dispersal of the crowd and the increase in evacuation time. (2) Most deaths occur in the early stage of crowd evacuation while pedestrians gather without perceiving the risk. (3) There is a trade-off between escaping from the room and avoidance of attackers for pedestrians. Appropriate panic contagion enables pedestrians to respond more quickly to risks. (4) Casualties are mainly concentrated in complex terrains, e.g. walls, corners, obstacles, exits, etc. (5) The initial position of the attackers has a significant effect on the crowd evacuation. The evacuation efficiency should be reduced if the attacker starts the attack from the exit or corners.

Originality/value

In this research, the concept of “focus region” is proposed to depict the different reactions of pedestrians to danger and the effects of the attacker’s motion (especially the attack strategies of attackers) are classified. Additionally, the influences on pedestrians by direct and indirect panic sources are studied.

Details

Kybernetes, vol. 53 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 January 2023

Faisal Lone, Harsh Kumar Verma and Krishna Pal Sharma

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable…

Abstract

Purpose

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable networks. Vehicle-to-everything (V2X) communication has brought the long-anticipated goal of safe, convenient and sustainable transportation closer to reality. The connected vehicle (CV) paradigm is critical to the intelligent transportation systems vision. It imagines a society free of a troublesome transportation system burdened by gridlock, fatal accidents and a polluted environment. The authors cannot overstate the importance of CVs in solving long-standing mobility issues and making travel safer and more convenient. It is high time to explore vehicular networks in detail to suggest solutions to the challenges encountered by these highly dynamic networks.

Design/methodology/approach

This paper compiles research on various V2X topics, from a comprehensive overview of V2X networks to their unique characteristics and challenges. In doing so, the authors identify multiple issues encountered by V2X communication networks due to their open communication nature and high mobility, especially from a security perspective. Thus, this paper proposes a trust-based model to secure vehicular networks. The proposed approach uses the communicating nodes’ behavior to establish trustworthy relationships. The proposed model only allows trusted nodes to communicate among themselves while isolating malicious nodes to achieve secure communication.

Findings

Despite the benefits offered by V2X networks, they have associated challenges. As the number of CVs on the roads increase, so does the attack surface. Connected cars provide numerous safety-critical applications that, if compromised, can result in fatal consequences. While cryptographic mechanisms effectively prevent external attacks, various studies propose trust-based models to complement cryptographic solutions for dealing with internal attacks. While numerous trust-based models have been proposed, there is room for improvement in malicious node detection and complexity. Optimizing the number of nodes considered in trust calculation can reduce the complexity of state-of-the-art solutions. The theoretical analysis of the proposed model exhibits an improvement in trust calculation, better malicious node detection and fewer computations.

Originality/value

The proposed model is the first to add another dimension to trust calculation by incorporating opinions about recommender nodes. The added dimension improves the trust calculation resulting in better performance in thwarting attacks and enhancing security while also reducing the trust calculation complexity.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 1000