Search results

1 – 3 of 3
Article
Publication date: 28 October 2022

Rubaya Rahat, Piyush Pradhananga and Mohamed ElZomor

Safe-to-fail (SF) is an emerging resilient design approach that has the potential to minimize the severity of flood damages. The purpose of this study is to explore the SF design…

Abstract

Purpose

Safe-to-fail (SF) is an emerging resilient design approach that has the potential to minimize the severity of flood damages. The purpose of this study is to explore the SF design strategies to reduce flood disaster damages in US coastal cities. Therefore, this study addresses two research questions: identifying the most suitable SF criteria and flood solution alternatives for coastal cities from industry professionals’ perspective; and investigating the controlling factors that influence the AEC students’ interest to learn about SF concepts through the curricula.

Design/methodology/approach

This study used the analytical hierarchy process to evaluate the SF criteria and flood solutions where data were collected through surveying 29 Department of Transportation professionals from different states. In addition, the study adopted a quantitative methodology by surveying 55 versed participants who reside in a coastal area and have coastal flood experiences. The data analysis included ordinal probit regression and descriptive analysis.

Findings

The results suggest that robustness is the highest weighted criterion for implementing SF design in coastal cities. The results demonstrated that ecosystem restoration is the highest-ranked SF flood solution followed by green infrastructure. Moreover, the results highlighted that age, duration spent in the program and prior knowledge of SF are significantly related to AEC students’ interest to learn this concept.

Originality/value

SF design anticipates failures while designing infrastructures thus minimizing failure consequences due to flood disasters. The findings can facilitate the implementation of the SF design concept during the construction of new infrastructures in coastal cities as well as educate the future workforces to contribute to developing resilient built environments.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 12 July 2022

Sushilawati Ismail, Carol K.H. Hon, Philip Crowther, Martin Skitmore and Fiona Lamari

Malaysia’s industrialised building system (IBS) has been increasingly adopted for sustainable development by the country’s construction industry. However, although it has been…

Abstract

Purpose

Malaysia’s industrialised building system (IBS) has been increasingly adopted for sustainable development by the country’s construction industry. However, although it has been used for commercial building projects, its application to sustainable infrastructure development has been limited to date. This study aims to examine the drivers and challenges involved.

Design/methodology/approach

A preliminary conceptual framework was initially developed based on a systematic literature review. Semi-structured interviews involving 20 participants were undertaken to gain insightful thoughts from the construction practitioners to discover the perception towards IBS application in the construction industry, the applicability of IBS, particularly in infrastructure projects, the strategies of IBS delivery and the sustainable potential of its application. A two-round Delphi study was conducted with 15 experienced and knowledgeable panellists to further identify, verify and prioritise factors developed from the literature review and interview findings. Then, the results were synthesised and triangulated to demonstrate a holistic insight.

Findings

The results show the main drivers to be better productivity, quality, environmental, safety and health, constructability design and cost, policy and requirements, with the main challenges being project planning and cost-related issues, inexperience and industry capacity.

Originality/value

The study’s main contribution is in systematically determining the practical implications involved in applying the IBS to sustainable infrastructure developments in Malaysia and other similar developing countries.

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 March 2024

Yuxuan Wu, Wenyuan Xu, Tianlai Yu and Yifan Wang

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the…

Abstract

Purpose

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the mechanical properties of the PUC and steel plate interface under the coupled action of temperature, normal force and tangential force were explored through shear tests and numerical simulations. An analytical model for bond-slip at the PUC/steel plate interface and a predictive model for the shear strength of the PUC/steel plate interface were developed.

Design/methodology/approach

The new shear test device designed in this paper overcomes the defect that the traditional oblique shear test cannot test the interface shear performance under the condition of fixed normal force. The universal testing machine (UTM) test machine was used to adjust the test temperature conditions. Combined with the results of the bond-slip test, the finite element simulation of the interface is completed by using the COHENSIVE unit to analyze the local stress distribution characteristics of the interface. The use of variance-based uncertainty analysis guaranteed the validity of the simulation.

Findings

The shear strength (τf) at the PUC-plate interface was negatively correlated with temperature while it was positively correlated with normal stress. The effect of temperature on the shear properties was more significant than that of normal stress. The slip corresponding to the maximum shear (D1) positively correlates with both temperature and normal stress. The interfacial shear ductility improves with increasing temperature.

Originality/value

Based on the PUC bond-slip measured curves, the relationship between bond stress and slip at different stages was analyzed, and the bond-slip analytical model at different stages was established; the model was defined by key parameters such as elastic ultimate shear stress τ0, peak stress τf and interface fracture energy Gf.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Access

Year

Last 6 months (3)

Content type

1 – 3 of 3