Search results

1 – 4 of 4
Open Access
Article
Publication date: 9 May 2022

Kevin Wang and Peter Alexander Muennig

The study explores how Taiwan’s electronic health data systems can be used to build algorithms that reduce or eliminate medical errors and to advance precision medicine.

1813

Abstract

Purpose

The study explores how Taiwan’s electronic health data systems can be used to build algorithms that reduce or eliminate medical errors and to advance precision medicine.

Design/methodology/approach

This study is a narrative review of the literature.

Findings

The body of medical knowledge has grown far too large for human clinicians to parse. In theory, electronic health records could augment clinical decision-making with electronic clinical decision support systems (CDSSs). However, computer scientists and clinicians have made remarkably little progress in building CDSSs, because health data tend to be siloed across many different systems that are not interoperable and cannot be linked using common identifiers. As a result, medicine in the USA is often practiced inconsistently with poor adherence to the best preventive and clinical practices. Poor information technology infrastructure contributes to medical errors and waste, resulting in suboptimal care and tens of thousands of premature deaths every year. Taiwan’s national health system, in contrast, is underpinned by a coordinated system of electronic data systems but remains underutilized. In this paper, the authors present a theoretical path toward developing artificial intelligence (AI)-driven CDSS systems using Taiwan’s National Health Insurance Research Database. Such a system could in theory not only optimize care and prevent clinical errors but also empower patients to track their progress in achieving their personal health goals.

Originality/value

While research teams have previously built AI systems with limited applications, this study provides a framework for building global AI-based CDSS systems using one of the world’s few unified electronic health data systems.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 7 October 2021

Enas M.F. El Houby

Diabetic retinopathy (DR) is one of the dangerous complications of diabetes. Its grade level must be tracked to manage its progress and to start the appropriate decision for…

2577

Abstract

Purpose

Diabetic retinopathy (DR) is one of the dangerous complications of diabetes. Its grade level must be tracked to manage its progress and to start the appropriate decision for treatment in time. Effective automated methods for the detection of DR and the classification of its severity stage are necessary to reduce the burden on ophthalmologists and diagnostic contradictions among manual readers.

Design/methodology/approach

In this research, convolutional neural network (CNN) was used based on colored retinal fundus images for the detection of DR and classification of its stages. CNN can recognize sophisticated features on the retina and provides an automatic diagnosis. The pre-trained VGG-16 CNN model was applied using a transfer learning (TL) approach to utilize the already learned parameters in the detection.

Findings

By conducting different experiments set up with different severity groupings, the achieved results are promising. The best-achieved accuracies for 2-class, 3-class, 4-class and 5-class classifications are 86.5, 80.5, 63.5 and 73.7, respectively.

Originality/value

In this research, VGG-16 was used to detect and classify DR stages using the TL approach. Different combinations of classes were used in the classification of DR severity stages to illustrate the ability of the model to differentiate between the classes and verify the effect of these changes on the performance of the model.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 5 January 2023

Sourin Bhattacharya, Sanjib Majumder and Subarna Roy

Properly planned road illumination systems are collectively a public wealth and the commissioning of such systems may require extensive planning, simulation and testing. The…

Abstract

Purpose

Properly planned road illumination systems are collectively a public wealth and the commissioning of such systems may require extensive planning, simulation and testing. The purpose of this simulative work is to offer a simple approach to facilitate luminance-based road lighting calculations that can be easier to comprehend and apply to practical designing problems when compared to complex multi-objective algorithms and other convoluted simulative techniques.

Design/methodology/approach

Road illumination systems were photometrically simulated with a created model in a validated software platform for specified system design configurations involving high-pressure sodium (HPS) and light-emitting diode (LED) luminaires. Multiple regression analyses were conducted with the simulatively obtained data set to propound a linear model of estimating average luminance, overall uniformity of luminance and energy efficiency of lighting installations, and the simulatively obtained data set was used to explore luminaire power–road surface average luminance characteristics for common geometric design configurations involving HPS and LED luminaires, and four categories of road surfaces.

Findings

The six linear equations of the propounded linear model were found to be well-fitted with their corresponding observation sets. Moreover, it was found that the luminaire power–road surface average luminance characteristics were well-fitted with linear trendlines and the increment in road surface average luminance level per watt increment of luminaire power was marginally higher for LEDs.

Originality/value

This neoteric approach of estimating road surface luminance parameters and energy efficiency of lighting installations, and the compendia of luminaire power–road surface average luminance characteristics offer new insights that can prove to be very useful for practical purposes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 6 December 2022

Worapan Kusakunniran, Sarattha Karnjanapreechakorn, Pitipol Choopong, Thanongchai Siriapisith, Nattaporn Tesavibul, Nopasak Phasukkijwatana, Supalert Prakhunhungsit and Sutasinee Boonsopon

This paper aims to propose a solution for detecting and grading diabetic retinopathy (DR) in retinal images using a convolutional neural network (CNN)-based approach. It could…

1245

Abstract

Purpose

This paper aims to propose a solution for detecting and grading diabetic retinopathy (DR) in retinal images using a convolutional neural network (CNN)-based approach. It could classify input retinal images into a normal class or an abnormal class, which would be further split into four stages of abnormalities automatically.

Design/methodology/approach

The proposed solution is developed based on a newly proposed CNN architecture, namely, DeepRoot. It consists of one main branch, which is connected by two side branches. The main branch is responsible for the primary feature extractor of both high-level and low-level features of retinal images. Then, the side branches further extract more complex and detailed features from the features outputted from the main branch. They are designed to capture details of small traces of DR in retinal images, using modified zoom-in/zoom-out and attention layers.

Findings

The proposed method is trained, validated and tested on the Kaggle dataset. The regularization of the trained model is evaluated using unseen data samples, which were self-collected from a real scenario from a hospital. It achieves a promising performance with a sensitivity of 98.18% under the two classes scenario.

Originality/value

The new CNN-based architecture (i.e. DeepRoot) is introduced with the concept of a multi-branch network. It could assist in solving a problem of an unbalanced dataset, especially when there are common characteristics across different classes (i.e. four stages of DR). Different classes could be outputted at different depths of the network.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Access

Year

All dates (4)

Content type

Earlycite article (4)
1 – 4 of 4