Search results

1 – 2 of 2
Article
Publication date: 15 March 2024

Audu Ibrahim Ali, Mohd Kameil Abdul Hamid, Mohd Azman Bin Abas, Mohd Farid Muhamad Said, Anthony Chukwunonso Opia, Izhari Izmi Bin Mazali and Zul Hilmi Bin Che Daud

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study…

Abstract

Purpose

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study aims to develop, characterize and test the base ficus carica oil (fig oil) for its ethylene vinyl acetate copolymer (EVA) and sodium dodecylbenzene sulfonate (SDBS) content.

Design/methodology/approach

The sample characterization was done using the Fourier transmission infrared spectrum, whereas the morphologies of the EVA, SDBS particles and lubricated surfaces were carried out under scanning electron microscope equipment. To ensure the homogeneity of the solution (base oil and additives), the formulations were subjected to the sonication process. The anti-friction and anti-wear properties of EVA and SDBS particles as lubricant additives were investigated using a ball on a flat high-frequency reciprocating rig tribo-tester.

Findings

According to the findings, the base oil’s anti-friction and anti-wear capabilities can be greatly enhanced by the additions. revealed that the best results were obtained when 1.2% EVA + 2% SDBS was applied for the examination of wear (597.8 µm) and friction coefficient (0.106). Commercial references were used, nevertheless, and the results were excellent. This is because the particles in the contact area during lubrication have strong solubility and quickly penetrate the contact zone. The lubricating mechanisms were explained by a tribological model of the EVA + SDBS and SDBS particles.

Research limitations/implications

The coefficient of friction and wear reduction caused by the use of the additives will certainly enhance system performance and protect the machine components from excessive wear that could cause damage or failure.

Originality/value

The originality and uniqueness of this work are officially affirmed by the authors. The authors’ autonomous and original contribution to the development of sustainable lubrication is represented in this work. To the best of the authors’ knowledge, no other study has been published or made publicly available that duplicates the precise scope and goals of our research, and this conclusion is based on a thorough literature assessment.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 March 2024

Lili Wang, Ying’ao Liu, Jingdong Duan and Yunlong Bao

This study aims to enhance the lubrication performance of thrust bearings. The influence of columnar convex–concave compound microtexture on bearing performance is investigated

Abstract

Purpose

This study aims to enhance the lubrication performance of thrust bearings. The influence of columnar convex–concave compound microtexture on bearing performance is investigated

Design/methodology/approach

Based on the compound microtexture model of thrust bearings, considering surface roughness and turbulent effect, the variation of lubrication characteristics with the change in the compound microtexture parameters is studied.

Findings

The results indicate that, compared with circular microtexture, the maximum pressure of compound microtexture of thrust bearings increases by 7.42%. Optimal bearing performance is achieved when the internal microtexture depth is 0.02 mm. Turbulent flow states and surface roughness lead to a reduction in the optimal depth. The maximum pressure and load-carrying capacity of the bearing decrease as the initial angle increases, whereas the friction coefficient increases with the increase in the initial angle. The lubrication performance is best for bearings with a circumferential parallel arrangement of microtexture.

Originality/value

The novel composite microtexture with columnar convex-concave is proposed, and the computational model of thrust bearings is set. The influence of surface roughness and turbulent flow on the bearing performance should be considered for better conforming with engineering practice. The effect of microtexture depth, arrangement method and distribution position on the lubrication performance of the compound microtexture thrust bearing is investigated, which is of great significance for improving tribology, thrust bearings and surface microtexture theory.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2