Search results

1 – 10 of 40
Article
Publication date: 13 December 2021

Mustabshirha Gul, Md. Abul Kalam, Nurin Wahidah Mohd Zulkifli, Masjuki Hj. Hassan, Md. Mujtaba Abbas, Sumra Yousuf, Omar Sabah Al-Dahiree, Md. Kamaleldin Gaffar Abbas, Waqar Ahmed and Shahab Imran

The purpose of this study is to improve the tribological characteristics of cotton-biolubricant by adding nanoparticles at extreme pressure (EP) conditions in comparison with…

Abstract

Purpose

The purpose of this study is to improve the tribological characteristics of cotton-biolubricant by adding nanoparticles at extreme pressure (EP) conditions in comparison with commercial lubricant SAE-40.

Design/methodology/approach

This research involved the synthesis of cotton-biolubricant by transesterification process and then the addition of nanoparticles in it to improve anti wear (AW)/EP tribological behavior. SAE-40 was studied as a reference commercial lubricant. AW/EP characteristics of all samples were estimated by the four-ball tribo-tester according to the American Society for Testing and Materials D2783 standard.

Findings

The addition of 1-Wt.% TiO2 and Al2O3 with oleic acid surfactant in cotton-biolubricant decreased wear scar diameter effectively and enhanced the lubricity, load-wear-index, weld-load and flash-temperature-parameters. This investigation revealed that cotton-biolubricant with TiO2 nano-particle additive is more effective and will help in developing new efficient biolubricant to replace petroleum-based lubricants.

Research limitations/implications

Cotton biolubricant with TiO2 nano-particles appeared as an optimistic solution for the global bio-lubricant market.

Originality/value

No one has not studied the cotton biolubricant with nanoparticles for internal combustion engine applications at high temperature and EP conditions.

Details

Industrial Lubrication and Tribology, vol. 74 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 January 2022

Aiman Yahaya and Syahrullail Samion

Cold forging operation is one of the widely used techniques in industry production. This paper aims to present a case study in highlighting and modelling the use of different type…

Abstract

Purpose

Cold forging operation is one of the widely used techniques in industry production. This paper aims to present a case study in highlighting and modelling the use of different type of palm oil-based [palm stearin (PS), palm kernel oil (PKO) and palm mid olein (PMO)] as a bio-lubricant in cold forging process using experimental and finite element method.

Design/methodology/approach

Ring compression test plays a fundamental role in the understanding of materials science and engineering because of the deformation, friction and wear behaviour. Aluminium (A6061) was used in this test to observe the deformation of the ring with different palm oil and its derivatives by comparing with commercial metal forming oil.

Findings

The presence of certain type of palm oil-based lubricant has a good performance compared to mineral-based oil in terms of surface roughness but when observed in terms of friction the result shows that palm oil-based lubricant has poor friction performance compared to mineral oil-based lubricant (m = 0.25), where PS has the lowest friction at m = 0.3 compared to PKO (m = 0.35) and PMO (m = 0.38).

Research limitations/implications

This research is using palm oil in cold forging test to study the friction, formation and stress at certain levels of stroke. The detail of the test is explained in the manuscript as attached.

Social implications

This research is trying to promote the use of biodegradable material to reduce pollution to the surrounding.

Originality/value

The originality of this paper has been checked using Turnitin and the result is 13%.

Details

Industrial Lubrication and Tribology, vol. 74 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 April 2018

S. Shankar, M. Manikandan and G. Raja

The decrease in availability of mineral oils and their environmental hazards created the need to search for alternate bio-based oils. The aim of this study is to investigate the…

Abstract

Purpose

The decrease in availability of mineral oils and their environmental hazards created the need to search for alternate bio-based oils. The aim of this study is to investigate the friction and wear characteristics of kapok (Ceiba pentandra) oil as a bio-lubricant.

Design/methodology/approach

The wear and friction characteristics between steel-steel contact under lubrication were found using a pin-on-disk tribometer under different loads and sliding speeds, respectively. The corrosion and oxidation stability of the test lubricants were also analyzed. The worn surfaces of the specimen are analyzed with the help of an optical microscope. The obtained results were compared with palm oil and mineral oil (SAE20W 40).

Findings

From the investigation, it is found that the kapok oil possess a lower coefficient of friction and wear rate than palm and mineral oil. It is also found that the coefficient of friction varies proportionally and the wear rate varies inversely with the sliding speed as expected.

Originality/value

The present results confirm that the kapok oil can be used as an alternative lubricant to reduce the demand for mineral-based oil lubricants.

Details

Industrial Lubrication and Tribology, vol. 70 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 July 2019

Muhammad Arif Dandan, Syahrullail Samion, Nurul Farhanah Azman, Fazila Mohd Zawawi, Mohd Kameil Abdul Hamid and Mohamad Nor Musa

The purpose of this paper is to study the influence of polymeric viscosity improver on the tribological performance of palm kernel methyl ester (PKME).

Abstract

Purpose

The purpose of this paper is to study the influence of polymeric viscosity improver on the tribological performance of palm kernel methyl ester (PKME).

Design/methodology/approach

Tribological performances of the PKME added with the various concentration of ethylene-vinyl acetate copolymer (EVA) were evaluated using four-ball tribotester under extreme pressure condition. The morphologies of the worn surfaces were observed by using the optical microscope.

Findings

The addition of polymeric viscosity improver (EVA copolymer) has produced positive results towards the tribological properties of PKME. In total, 4 per cent of EVA copolymer is found as the optimum concentration by improving the friction reducing properties and anti-wear behaviour due to the formation of film thickness between two rubbing surfaces.

Originality/value

This work might contribute to the development of vegetable oils as a new source of environmental-friendly lubricant.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 March 2024

Audu Ibrahim Ali, Mohd Kameil Abdul Hamid, Mohd Azman Bin Abas, Mohd Farid Muhamad Said, Anthony Chukwunonso Opia, Izhari Izmi Bin Mazali and Zul Hilmi Bin Che Daud

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study…

Abstract

Purpose

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study aims to develop, characterize and test the base ficus carica oil (fig oil) for its ethylene vinyl acetate copolymer (EVA) and sodium dodecylbenzene sulfonate (SDBS) content.

Design/methodology/approach

The sample characterization was done using the Fourier transmission infrared spectrum, whereas the morphologies of the EVA, SDBS particles and lubricated surfaces were carried out under scanning electron microscope equipment. To ensure the homogeneity of the solution (base oil and additives), the formulations were subjected to the sonication process. The anti-friction and anti-wear properties of EVA and SDBS particles as lubricant additives were investigated using a ball on a flat high-frequency reciprocating rig tribo-tester.

Findings

According to the findings, the base oil’s anti-friction and anti-wear capabilities can be greatly enhanced by the additions. revealed that the best results were obtained when 1.2% EVA + 2% SDBS was applied for the examination of wear (597.8 µm) and friction coefficient (0.106). Commercial references were used, nevertheless, and the results were excellent. This is because the particles in the contact area during lubrication have strong solubility and quickly penetrate the contact zone. The lubricating mechanisms were explained by a tribological model of the EVA + SDBS and SDBS particles.

Research limitations/implications

The coefficient of friction and wear reduction caused by the use of the additives will certainly enhance system performance and protect the machine components from excessive wear that could cause damage or failure.

Originality/value

The originality and uniqueness of this work are officially affirmed by the authors. The authors’ autonomous and original contribution to the development of sustainable lubrication is represented in this work. To the best of the authors’ knowledge, no other study has been published or made publicly available that duplicates the precise scope and goals of our research, and this conclusion is based on a thorough literature assessment.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 August 2022

Ibrahim Ogu Sadiq, Mohd Azlan Suhaimi, Safian Sharif, Noordin Mohd Yusof and Muhammad Juzaili Hisam

The purpose of this study is to evaluate the potentials of nano-additives in enhancement of oxidation and thermal stability of biolubricants thereby, improving the resistance of…

Abstract

Purpose

The purpose of this study is to evaluate the potentials of nano-additives in enhancement of oxidation and thermal stability of biolubricants thereby, improving the resistance of dispersed nanolubricants to thermal degradation under elevated temperature.

Design/methodology/approach

This study evaluates the oxidation stability and tribological performance of nano-enhanced biolubricants. Graphene and maghemite nanoparticles at 0.1% volume concentration were dispersed into coconut oil. Oxidation stability was analysed using a thermal analyser to understand the effect of nano-additives on thermal degradation of lubricants under increasing temperature. In addition, tribological performance and viscosity of the tested lubricants were evaluated using a four-ball friction tester and viscometer according to American Society for Testing and Materials standards.

Findings

The results reveal that the oxidation stability of biolubricants dispersed with nano-additives improves due to delayed thermal degradation. The nano-enhanced biolubricants’ oxidation onset temperature was delayed by 18.75 °C and 37.5 °C, respectively, for maghemite (MGCO) and graphene (XGCO) nanolubricants. This improvement imparts the performance viscosity and tribological performance positively. For graphene-enhanced nanolubricant, 10.4% and 5.6% were reduced, respectively, in coefficient of friction (COF)and wear scar diameter (WSD), whereas 3.43% and 4.3% reduction in COF and WSD, respectively, for maghemite-enhanced nanolubricant compared with coconut oil. The viscosity index of nanolubricants was augmented by 7.36% and 13.85%, respectively, for maghemite and graphene nanolubricants.

Research limitations/implications

The excellent performance of nanolubricants makes them suitable candidate as sustainable lubricants for machining with regard to environmental benefits and energy saving.

Originality/value

The effect of graphene and maghemite nanoparticles on the oxidation stability and tribological performance of biolubricants has been investigated. It is an original work and yet to be published elsewhere.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 June 2018

Rehan Zahid, Masjuki Hj. Hassan, Abdullah Alabdulkarem, Mahendra Varman, Md. Abul Kalam, Riaz Ahmad Mufti, Nurin Wahidah Mohd Zulkifli, Mubashir Gulzar, Muhammad Usman Bhutta, Mian Ashfaq Ali, Usman Abdullah and Robiah H. Yunus

There is a continuous drive in automotive sector to shift from conventional lubricants to environmental friendly ones without adversely affecting critical tribological performance…

Abstract

Purpose

There is a continuous drive in automotive sector to shift from conventional lubricants to environmental friendly ones without adversely affecting critical tribological performance parameters. Because of their favorable tribological properties, chemically modified vegetable oils such as palm trimethylolpropane ester (TMP) are one of the potential candidates for the said role. To prove the suitability of TMP for applications involving boundary-lubrication regime such as cam/tappet interface of direct acting valve train system, a logical step forward is to investigate their compatibility with conventional lubricant additives.

Design/methodology/approach

In this study, extreme pressure and tribological characteristics of TMP, formulated with glycerol mono-oleate (GMO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyldithiophosphate (ZDDP), has been investigated using four-ball wear tester and valve train test rig. For comparison, additive-free and formulated versions of polyalphaolefin (PAO) were used as reference. Moreover, various surface characterization techniques were deployed to investigate mechanisms responsible for a particular tribological behavior.

Findings

In additive-free form, TMP demonstrated better extreme pressure characteristics compared to PAO and lubricant additives which are actually optimized for conventional base-oils such as PAO, are also proved to be compatible with TMP to some extent, especially ZDDP. During cylinder head tests, additive-free TMP proved to be more effective compared to PAO in reducing friction of cam/tappet interface, but opposite behavior was seen when formulated lubricants were used. Therefore, there is a need to synthesize specialized friction modifiers, anti-wear and extreme pressure additives for TMP before using it as engine lubricant base-oil.

Originality/value

In this study, additive-free and formulated versions of bio-lubricant are tested for cam/tappet interface of direct acting valve train system of commercial passenger car diesel engine for the very test time. Another important aspect of this research was comparison of important tribological performance parameters (friction torque, wear, rotational speed of tappet) of TMP-based lubricants with conventional lubricant base oil, that is, PAO and its formulated version.

Details

Industrial Lubrication and Tribology, vol. 70 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 October 2018

Binnur Sagbas

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological…

Abstract

Purpose

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological behavior of PEEK rubbed with DIN2080 tool steel, under prepared green lubricating condition.

Design/methodology/approach

In this study, tiribological performance of PEEK against the DIN2080 tool steel is investigated with green lubricant. Coconut oil was used as green lubricant and 4 per cent wt. h-BN powder was added as lubricant additive into the coconut oil. Reciprocal pin-plate tribological test were applied under dry, coconut oil and coconut oil+h-BN lubrication condition. Friction coefficients were recorded and wear behavior of the samples investigated by mass loss measurement and topographical inspection of wear track by optical profilometer.

Findings

Using coconut oil as lubricant provided 80 per cent reduction of friction coefficient and 33.4 per cent reduction of wear rate. Addition of h-BN into the coconut oil provide 84 per cent reduction of friction coefficient and 56 per cent reduction of wear rate. The results showed that vegetable oil is promising lubricant for sustainable manufacturing. h-BN serves to increase lubricant performance and decrease wear of the surfaces.

Practical implications

Petrochemical lubricants are one of the major sources of environmental pollution and health hazards. Development and use of environmental and health friendly lubricants support sustainability and reduce wear, friction and energy consumption. With this consciousness, recent studies have focused on green tribology and green lubricants such as vegetable oils, ionic liquid bio-lubricants and bio-based polymers.

Originality/value

In literature study coconut oil was proposed as green lubricant while h-BN powder was proposed as solid lubricant. However, applicability of h-BN powder in coconut oil has not been explored yet. Moreover, wear and friction property of PEEK material with DIN 2080 tool steel pair surface has not been studied yet with green lubricants.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 May 2020

Hilmi Amiruddin, Mohd Fadzli Bin Abdollah and Muhamad Aliff Danial Mohamad Nizar

This study aims to introduce a novel technique which helped in quantifying the wear performance of a roller chain which was lubricated by using the palm oil-based hexagonal boron…

Abstract

Purpose

This study aims to introduce a novel technique which helped in quantifying the wear performance of a roller chain which was lubricated by using the palm oil-based hexagonal boron nitride (hBN) nanoparticles (nano-biolubricant).

Design/methodology/approach

The efficiency of the nano-biolubricant was evaluated by using a custom-made roller chain tribometer, at different resistance torque values at a constant speed and running time. Prior to the test, 2 different lubrication conditions were applied. The mass loss and elongation behaviour of a roller chain was selected as a degradation metric for monitoring the amount of the chain wear. The predominant wear mechanism of a roller chain was identified by surface morphological analysis.

Findings

Regardless of the lubrication conditions, the wear performance of the roller chain was significantly increased, at increasing resistance torque values. Higher wear was noted when the roller chain was lubricated using a nano-biolubricant, however, the wear curve showed a promising high chain life. The predominant wear mechanism involved is abrasive wear.

Originality/value

Although an increase in the elongation during running is based on the wear between the pins and roller, none of the earlier studies quantified the wear performance of a roller chain under differing lubrication conditions. Hence, for bridging the gap, this study described a new method for measuring the wear performance of the roller chain which was lubricated using the palm oil-based hBN nanoparticles or a nano-biolubricant.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2020-0061/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 September 2021

Pramod S. Kathamore and Bhanudas D. Bachchhav

The screening of lube oil performance prior to field trials is the most significant for the formulation of novel lubricants. This paper aims to investigate the efficacy of…

Abstract

Purpose

The screening of lube oil performance prior to field trials is the most significant for the formulation of novel lubricants. This paper aims to investigate the efficacy of trimethylolpropane trioleate oil (TMPTO) based lubricants with different additives.

Design/methodology/approach

In this endeavor, initially five lubricating blends along-with TMPTO based oil with variable additives were evaluated for their tribological performances using ASTM standards. Out of these, the top three best-performing oils were further investigated for possible physical or chemical synergies among lube oils, additives and ball surface using SEM. The molecule structures of TMPTO based lube oils were confirmed using Fourier transform infrared spectroscopy (FTIR).

Findings

The wear preventive and extreme pressure characteristics of different TMPTO based samples were evaluated and compared for compatibility and synergy of additives. Morphological analysis of SEM images was used to understand the wear behavior of the worn surfaces.

Practical implications

Further investigation of TMPTO oil on its oxidation stability at high temperature and pressure to make it technologically competitive and commercially viable metal-working lubricant is suggested.

Originality/value

This paper highlights the tribo-effects of TMPTO to be rendered as a suitable lubricant for metal-cutting operations. The surface morphology of the worn-out surface significantly demonstrates the effect of loading conditions.

Details

Industrial Lubrication and Tribology, vol. 73 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 40