Search results

1 – 4 of 4
Article
Publication date: 20 September 2024

Renato Zona, Luca Esposito, Simone Palladino and Vincenzo Minutolo

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent…

Abstract

Purpose

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent continuum. The proposed investigation deals with the mechanical characterization of the heterogeneous material structured metamaterials through analyzing the ultimate strength using the limit analysis of the Representative Volume Element (RVE). To get the desired material strength, a novel finite element formulation based on the derivation of self-equilibrated solutions through the finite elements devoted to calculating the lower bound theorem has been implemented together with the limit analysis in Melàn’s formulation.

Design/methodology/approach

The finite element formulation is based on discrete mapping of Volterra dislocations in the structure using isoparametric representation. Using standard finite element techniques, the linear operator V, which relates the self-equilibrated internal solicitation to displacement-like nodal parameters, has been built through finite element discretization of displacement and strain.

Findings

The proposed work presented an elastic homogenization of the mechanical properties of an elementary cell with a geometry known in the literature, the isotropic truss. The matrix of elastic constants was calculated by subjecting the RVE to numerical load tests, simulated with a commercial FEM calculation code. This step showed the dependence of the isotropy properties, verified with Zener theory, on the density of the RVE. The isotropy condition of the material is only achieved for certain section ratios between body-centered cubic (BCC) and face-centered cubic (FCC), neglecting flexural effects at the nodes. The density that satisfies Zener’s conditions represents the isotropic geomatics of the isotropic truss.

Originality/value

For the isotropic case, the VFEM procedure was used to evaluate the isotropy of the limit domain and was compared with the Mises–Schleicher limit domain. The evaluation of residual ductility and dissipation energy allowed a measurement parameter for the limit anisotropy to be defined. The novelty of the proposal consisted in the formulation of both the linearized and the nonlinear limit locus of the material; hence, it furnished the starting point for further limit analysis of the structures whose elementary volume has been described through the proposed approach.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 September 2024

Bruno Benegra Denadai, José Aguiomar Foggiatto, Peterson Triches Dornbusch, Maria Fernanda Pioli Torres and Marco Antônio Luersen

This paper aims to design and manufacture an equine hand prosthesis using additive manufacturing, with an estimated useful life of one year. This approach offers a fast and…

Abstract

Purpose

This paper aims to design and manufacture an equine hand prosthesis using additive manufacturing, with an estimated useful life of one year. This approach offers a fast and affordable manufacturing alternative while ensuring the horse's safety, comfort and functionality.

Design/methodology/approach

The ground reaction force and the frequency of a horse’s walking were obtained from the literature. Mechanical tests were conducted on specimens with different manufacturing directions to determine the mechanical properties of the printed material. Finite element simulations, along with fatigue equations were used to design a geometry that respected the stress constraints. Subsequently, a prototype was manufactured in thermoplastic polyurethane using additive manufacturing technique.

Findings

With the aid of the proposed methodology, a new low-cost equine hand prosthesis is developed, and a prototype is manufactured. And in accordance with the design requirements, this prosthesis is intended to exhibit proper durability.

Social implications

This work presents an alternative way for horses facing amputation, offering a solution where euthanasia can be avoided through the use of a prosthesis to replace a part of the amputated limb. This approach could not only extend the reproductive life of matrices with high commercial value but also preserve the lives of animals with sentimental value to the owner.

Originality/value

To the best of the authors' knowledge, this is the first study of an equine hand prosthesis model designed for and manufactured by additive manufacturing.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 September 2024

Sinan Obaidat, Mohammad Firas Tamimi, Ahmad Mumani and Basem Alkhaleel

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and…

Abstract

Purpose

This paper aims to present a predictive model approach to estimate the tensile behavior of polylactic acid (PLA) under uncertainty using the fused deposition modeling (FDM) and American Society for Testing and Materials (ASTM) D638’s Types I and II test standards.

Design/methodology/approach

The prediction approach combines artificial neural network (ANN) and finite element analysis (FEA), Monte Carlo simulation (MCS) and experimental testing for estimating tensile behavior for FDM considering uncertainties of input parameters. FEA with variance-based sensitivity analysis is used to quantify the impacts of uncertain variables, resulting in determining the significant variables for use in the ANN model. ANN surrogates FEA models of ASTM D638’s Types I and II standards to assess their prediction capabilities using MCS. The developed model is applied for testing the tensile behavior of PLA given probabilistic variables of geometry and material properties.

Findings

The results demonstrate that Type I is more appropriate than Type II for predicting tensile behavior under uncertainty. With a training accuracy of 98% and proven presence of overfitting, the tensile behavior can be successfully modeled using predictive methods that consider the probabilistic nature of input parameters. The proposed approach is generic and can be used for other testing standards, input parameters, materials and response variables.

Originality/value

Using the proposed predictive approach, to the best of the authors’ knowledge, the tensile behavior of PLA is predicted for the first time considering uncertainties of input parameters. Also, incorporating global sensitivity analysis for determining the most contributing parameters influencing the tensile behavior has not yet been studied for FDM. The use of only significant variables for FEA, ANN and MCS minimizes the computational effort, allowing to simulate more runs with reduced number of variables within acceptable time.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4